NPS-67Nt76091 ## MAVAL POSTGRADUATE SCHOOL Monterey, California AN AMBIENT AIR QUALITY MODEL FOR ASSESSMENT OF U.S. NAVAL AVIATION EMITTANTS G. R. Thompson and D. W. Netzer September 1976 Approved for public release; distribution unlimited Prepared for: Naval Air Propulsion Test Center Trenton, New Jersey ## NAVAL POSTGRADUATE SCHOOL Monterey, California Rear Admiral I. W. Linder Superintendent Jack R. Borsting Provost The work reported herein was supported by the Naval Air Propulsion Test Center, Trenton, New Jersey, and the Navy Environmental Protection Support Service. Reproduction of all or part of this report is authorized. This report was prepared by: | 10 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | | | | · + | | |--|--------------|------------|---|------|--| | • | <i>;</i> ;;. | . <i>:</i> | 1 | 1:1/ | | G. R. THOMPSON LT, USN D. W. NETZER D. W. NETZER Associate Professor of Aeronautics Reviewed by: R. W. BELL, Chairman Department of Aeronautics Released by: R. R. FOSSUM Dean of Research | ACCESSION for | | |---------------|--------------------------------| | RTIS: | White Section D | | onanno urceb | | | JUSTIFICATION | | | | 900-00-00-0 0 -00-0 | | DISTRIBUTION, | AVARABILITY CODES | | Bist. Al | VAIL and/ WEGIAL | | | | | | | UNCLASSIFIED SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered) **READ INSTRUCTIONS** REPORT DOCUMENTATION PAGE BEFORE COMPLETING FORM REPORT NUMBER 2. GOVT ACCESSION NO. 3. RECIPIENT'S CATALOG NUMBER NPS-67Nt76091 5. TYPE OF REPORT & PERIOD COVERED 9) Final rest. An Ambient Air Quality Model for Assessment of U.S. Naval Aviation 1976 6. PERFORMING ORG. REPORT NUMBER Emittants. AUTHOR(a) 8. CONTRACT OR GRANT NUMBER(0) Gary/Thompson David W./Netzer PERFORMING ORGANIZATION NAME AND ADDRESS PROGRAM ELEMENT, PROJECT, TASK AREA & WORK UNIT NUMBERS Naval Postgraduate School N623763WR00037 Monterey, California 93940 11. CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE Sept 276 Naval Air Propulsion Test Center Trenton, New Jersey 104 18. SECURITY CLASS. (of this report) 14. MONITORING AGENCY NAME & ADDRESS(II different from Controlling Office) Unclassified 15a, DECLASSIFICATION/DOWNGRADING 16. DISTRIBUTION STATEMENT (of this Report) Approved for public release; distribution unlimited 17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if different from Report) 18. SUPPLEMENTARY NOTES 19. KEY WORDS (Continue on reverse side if necessary and identify by block number) Air Pollution Aircraft Model Navy 20. ABSTRACT/(Continue on reverse side if necessary and identify by block number) An air quality assessment model for U.S. Naval aircraft operations was developed from a generalized air quality assessment model for U.S. Air Force operations. Data were gathered by observation of operations at a Naval Air Station and these data used to conduct parametric studies to demonstrate the capabilities of the model. Modifications to the original DD 1 JAN 73 1473 EDITION OF 1 NOV 65 IS OBSOLETE S/N 0102-014-6601 : model and these parametric studies are discussed. UNCLASSIFIED SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered) 251 450 To Park the state of s ## TABLE OF CONTENTS | I. | INT | RODU | CTION | V | | | | | | | | 6 | |------|------|------|-------------------|-------------|--------------|------------|-------|----------------|-------------|-----------|------------|----| | II. | MODI | EL O | VERV | EW - | | | | | | | | 11 | | III. | ADAI | PTAT | ION F | REQUI | REMEN | ITS - | | | | | | 17 | | IV. | ADAI | PTAT | IONS | ACCC | MPLIS | HED | | | | | | 22 | | v. | DATA | A AC | QUISI | TION | | | | | | | | 28 | | VI. | RESU | JLTS | AND | DISC | ussic | N | | | | - | | 33 | | VII. | CONC | CLUS | IONS | AND | RECOM | MEND | ATION | ıs | | | | 53 | | APPI | ENDI | (A | Airc
Grid
2 | raft
Rec | Air
eptor | Bas
Con | e, En | viron
ation | and
s fo | To
r c | tal
ase | 55 | | LIST | ГОБ | REF | ERENC | ES - | | | | | | | | 99 | | INIT | ΓIAL | DIS | TRIBU | TION | LIST | | | | | | 1 | 01 | ## LIST OF TABLES | I. | NAVY LTO MODES | 13 | |-------|---|-----| | II. | AIR BASE NON-AIRCRAFT EMISSION SOURCES | 14 | | III. | POINT SOURCES AT NAS MIRAMAR | 29 | | IV. | AREA SOURCES AT NAS MIRAMAR | 30 | | v. | LINE SOURCES AT NAS MIRAMAR | 31 | | VI. | ENVIRON SOURCES SURROUNDING NAS MIRAMAR | 31 | | VII. | SIMULATIONS OF OPERATIONS AT NAS MIRAMAR | 34 | | VIII. | METEORLOGICAL AND TEMPORAL DATA | 35 | | IX. | CASE 1 - SUMMARY OF AIRCRAFT SOURCE EMISSIONS | 37 | | χ. | CASE 1 - SUMMARY OF AIR BASE SOURCE EMISSIONS | 38 | | XI. | CASE 1 - SUMMARY OF ENVIRON AND TOTAL SOURCE EMISSIONS | 40 | | XII. | CASE 2 - SUMMARY OF ENVIRON AND TOTAL SOURCE EMISSIONS | 4 2 | | XIII. | MAXIMUM 1-HOUR RECEPTOR CONCENTRATION (CHI) FROM AIRCRAFT SOURCES AT NAS MIRAMAR | 45 | | XIV. | MAXIMUM 1-HOUR RECEPTOR CONCENTRATION (CHI) FROM AIR BASE SOURCES AT NAS MIRAMAR | 47 | | xv. | AMBIENT AIR QUALITY STANDARDS | 49 | | XVI. | MAXIMUM 1-HOUR RECEPTOR CONCENTRATION (CHI) FROM ENVIRON SOURCES NEAR NAS MIRAMAR | 50 | | XVII. | MAXIMUM 1-HOUR RECEPTOR CONCENTRATION (CHI) FROM TOTAL SOURCES ABOUT NAS MIRAMAR | 52 | ## LIST OF FIGURES | 1. | IFR Approach and Departure 18 | |----|--| | 2. | VFR Flight Simulations 19 | | 3. | Helicopter Flight Simulations 23 | | | Naval Air Station Miramar, General Development | #### I. INTRODUCTION Public awareness of the environment and its quality, and governmental concern for the public health and welfare, have resulted in substantial environmental legislation in the last fifteen years. Federal air quality legislation culminated in 1970 with the creation of the Environmental Protection Agency (EPA). This agency was charged with developing and implementing national air quality standards. In 1971 air quality standards were prescribed for carbon monoxide, hydrocarbons, nitrogen dioxide, particulate matter, sulfur dioxide and photochemical oxidants \(\subseteq \text{Ref. 1_7.} \) Both the Air Quality Act of 1967 and the Clean Air Act of 1970 refer to aircraft emissions as a possible source contributing to air pollution. In 1973 emission standards and test procedures were prescribed for commercial aircraft engines by the EPA _Ref. 2_7. The EPA was concerned with pollution of the lower atmosphere by combustion products produced by commercial aircraft. The lower atmosphere was defined to extend from ground level to three thousand feet. Aircraft operations were defined in terms of a landing and take off operational cycle time-in-mode (LTO). Techniques were prescribed for measuring emissions during a simulated LTO, and engine specifications were defined by engine thrust category based on engine type and date of manufacture. The goal of the EPA is the prevention of degradation of ambient air quality. An accurate quantification of emissions and their distribution throughout a local environment is required to assess the impact of any emission source on air quality. Once quantification is accomplished, the predicted ambient air quality can be compared to EPA requirements, and control procedures, if warranted, can be instituted by the operating agency/corporation. Mathematical models which simulate aircraft, air base and off air base activities provide the most flexible approach to quantifying emissions by source and to distributing these emissions over a grid of receptors for determination of ambient air quality. There have been several major modeling efforts which are concerned with air quality as affected by aircraft operations. An early model was developed by Northern Research and Engineering Corporation (NREC) / Ref. 3_7. This model provided the basis for development of the GEOMET Model / Ref. 4_7. The GEOMET Model significantly modified and improved the NREC model and has been validated to some extent by measurements at the Washington National Airport. Military air operations may differ significantly from civilian air operations. To this end Argonne National Laboratory has been contracted by the USAF to develop a computer model based on the TRW "Air Quality Display Model" (AQDM) / Ref. 5_7 to estimate the concentrations of pollutants throughout a theoretical grid of receptors over a period of time. Under this contract Argonne has developed a preliminary version of "A Generalized Air Quality Assessment Model for Air Force Operations" (AQAM), which brings together several models of different pollution sources and will serve as a device for assessing environmental air quality / Ref. 6_7. The above models include emission and dispersion programs. There are some differences between the GEOMET and AQAM models. These differences are primarily in the areas of source representation and dispersion parameter specification. Argonne's original contract included 12 specific tasks [Ref. 6]. Among them was a generalization and update modification of AQDM to obtain long-term average calculations which included military aircraft landings and take-offs as a source of emissions. In addition they were to develop a short-term model which performed hourly calculations and an inventory model which summarized annual emissions at an activity by source. Standards proposed by the EPA for civil aviation do not apply to the military. However both the United States Air Force (USAF) and the United States Navy (USN) have, in a spirit of cooperation, proceeded to establish a data base for engine emissions _Ref. 7 and 8_7 and to specify LTO cycles consistent with their respective aircraft operations _Ref. 9 and 10_7. The USAF data base and LTO cycles were incorporated into the air quality assessment model developed by Argonne. This model may be used to assess the impact on air quality of aircraft operations, to evaluate the effect of modifications of aircraft operations on air quality, to determine the qualitative
importance of aircraft, air base and environ (off air base) emission sources, to provide an estimate of local ambient air quality and to optimize the location of receptors for model verification. "Liason between the Air Force Weapons Laboratory at Kirkland AFB, New Mexico, the Naval Air Propulsion Test Center (NAPTC) at Trenton, New Jersey, and the Naval Postgraduate School, Monterey, California" stimulated USN interest in the capabilities of the Argonne model. Accordingly a copy of both the Source Inventory and Short-term pollution models were obtained for evaluation and adaptation to USN operations \(\subseteq \text{Ref. 10_7.} \) Substantial modifications were made by LCDR Keith I. Weal to adapt the Argonne model to USN aircraft operations _Ref. 10_7. An LTO cycle is defined by the number of operational modes required to complete the cycle. The EPA utilizes ten, and the USAF eleven, operational modes to define an LTO cycle. These cycles are restricted to a vertical plane and do not define operational modes which are peculiar to the USN. Reference 10 defines a USN LTO cycle to consist of sixteen operational modes including such USN vagaries as "hot refueling" and Field Carrier Landing Practice (FCLP). Naval aircraft operations are dictated, even when based ashore, by the demanding (often unforgiving) shipboard environment. This shipboard environment requires substantial low altitude, high intensity operations to ensure combat readiness. Therefore, LCDR Weal expanded the simulations of aircraft flight from two to three dimensions. The present study completed adaptation of the Argonne model to Navy operations and used this version of the model to assess the relationship between aircraft operations, air base activity and off air base activity on ambient air quality at the Miramar Naval Air Station (NAS). #### II. MODEL OVERVIEW AQAM is composed of a Source Inventory Program, a Meteorological Data Program, a Short-term Emission Dispersion Program and a Long-term Emission Dispersion Program / Ref. 6 7. The Source Inventory Program produces an annual source emission inventory and creates a data bank of temporal distribution arrays, source geometries, and source operational activity factors which are utilized by both the Long- and Short-term Programs. "The Short-term Program computes hourly average air pollutant concentrations using hourly average meteorological and emission data" / Ref. 67. The Long-term Program computes monthly or annual average air pollutant concentrations utilizing emission data and historical meteorological records. The Meteorological Data Program is used only as input to the Long-term Program. Only the Source Inventory Program and the Short-term Emission Dispersion Program are being modified to provide an air quality assessment model for Naval air operations. The Source Inventory Program computes the annual emissions of three categories of sources: aircraft, airbase but non aircraft, and environment (off air base). Each category is further divided by its geometric configuration into point sources, area sources and line sources Ref. 10_7. After the spatial configuration of the source is defined the emission plume is located in three-dimensional space and the mass emission rate of each pollutant emitted by the source is determined from source activity data and appropriate emission factors [Ref. 6.7. Aircraft sources which define the Navy LTO cycle are listed in Table I. Aircraft flight and taxi operations are simulated by finite line sources. Aircraft servicing, delays and pre-flight checks are simulated by area sources. Aircraft sources include all emissions due directly to aircraft operations and servicing. The operational characteristics and servicing requirements of aircraft are dependent on aircraft type. Therefore, the emissions from aircraft operations and servicing are calculated from unique operational data which define various modes of operation and differentiate between aircraft types, taxi paths, parking areas, refueling procedures and runways. Commercial and military air operations are always supported by an air base. Air base sources are defined as those sources producing emissions due directly to non-aircraft base activities and include all base support facilities, training facilities, service facilities, housing, vehicle parking areas and on-base roadways. Listed in Table II _ Ref. 11_7 by geometric configuration are the non-aircraft sources encountered at most military air bases. The environment which surrounds an air base must be accounted for in assessing air quality. "Environ" sources include all point, line and area sources which exist beyond the boundaries of the air base. Motor vehicle emissions are calculated from activity factors and may be specified as TABLE I NAVY LTO MODES | MODE OF OPERATION | SOURCE MODEL | |---------------------------------|--------------| | Startup | Area | | Taxi out | Line | | Take off delay* | Area | | Engine check | Area | | Runway (take off) roll | Line | | Climb (1+2) | Line | | Approach IFR | Line | | Approach VFR* | Line | | Landing | Line | | Taxi in | Line | | (Hot + Pit) refuel delay* | Area | | Hot refuel* | Area | | Shutdown | Area | | (Arrival + Departure) servicing | Area | | Fuel venting | Area | | Fill + spill | Area | | TGO pattern* | Line | | FCLP pattern* | Line | | Pad work* | Line | | Hover work* | Area | | Autorotation pattern* | Line | ^{*}Modification to AQAM TABLE II AIR BASE NON-AIRCRAFT EMISSION SOURCES (from Ref. 11) | POINT | LINE | AREA | |---------------------|------------------|--------------------| | Training Fires | Military Vehicle | Fuel, Working | | Test Cells | Civilian Vehicle | Fuel, Spillage | | Runup Stands | Other | Fuel Breathing | | Power Plants | | - Storage Tanks | | Incinerators | | - Tank Trucks | | Large Storage Tanks | | - Auto Parking | | Other | | Other Hydrocarbons | | | | Space Heating | | | | Off-Road Vehicles | | | | Military Vehicle | | | | Civilian Vehicle | area or line sources. All other environ sources (point, area and line) require data input of actual annual emissions by pollutant type in addition to spatial configuration data. Land use factors may be used for an order of magnitude estimate of environ area source emissions [Ref. 6]. Since aircraft, air base and environ emissions are inventoried by the Source Inventory Program, this program acts as a comprehensive model for calculation of annual emissions and provides a qualitative ranking of the importance of each source to air quality. The Source Inventory Program also produces the data bank containing source characteristics, annual emission rates and temporal distribution activity which is utilized by the Short-term Program. The Short-term Program "receives the compiled annual results of the Source Inventory Program and calculates the dispersion of generated pollutants during a given hour, day and month utilizing average meteorological conditions for that hour" \(\int \text{Ref. 10_7.} \) Most emissions which have zero plume rise are classified as area or line sources. Those sources which exhibit plume rise are classified as point sources. Point source emissions require an input data set of physical and geometric parameters to define a plume in three-dimensional space with the exception of large storage tanks and run-up stands which are modeled as point sources without a plume rise. In general, point sources with vertical exhaust emissions are modeled by a Holland or Carson-Moses plume rise and those with horizontal exhaust or evaporative transport are modeled without a plume rise. Plume definition requires the input of many parameters. For example, point source data specified for test cells consist of the X,Y coordinates of the source, stack height, stack exit gas temperature, stack exit gas velocity, stack diameter, building height, and initial and vertical dispersion parameters. Line and area sources require less source physical definition since these sources are modeled without a plume rise. Line sources are specified by the length of the line and the activity which occurs on the line. Area sources are specified by the X,Y coordinates of the center of the area, the length of a side and the activity which occurs in the area. "Transport and dispersion of pollutant emissions are modeled using a steady state Gaussian plume formulation" in both the horizontal and vertical directions. Point sources are treated by a "virtual source technique," whereas line sources are treated by "analytical integration over the length of the line" and area sources are treated as "pseudo point sources located upwind of the actual area source" [Ref. 6]7. The appropriate travel time or travel distance dispersion coefficients are used "to estimate lateral and vertical diffusion" and downwash rules are utilized to determine the effective emission height / Ref. 6.7. The dispersal of pollutants over a grid of receptors allows comparison of ambient pollutant concentrations to air quality standards. #### III. ADAPTATION REQUIREMENTS Military aviation differs considerably from commercial aviation in landing and departure evolutions. In addition, USN flight evolutions differ from USAF flight evolutions due to "the dissimilar operational landing facilities used by the two services" and the different training requirements imposed by the dissimilar missions of the two services. "A USAF aircraft always utilizes a runway or other prepared surface for takeoffs and landings, as opposed to Naval aviation's use of the comparatively small aircraft carrier" Both the EPA's and USAF's LTO cycles confine all flight operations in one vertical plane _Ref. 2, 8, and 9_7. Reference 10 stipulates that flight operations occur in a vertical plane only when Instrument Flight Rules (IFR) are in effect and that flight operations are best simulated by three-dimensional models when Visual Flight Rules (VFR) are in effect. Figures 1 and 2 depict IFR and VFR aircraft operations. The
three-dimensional LTO cycle required to adequately simulate VFR approaches, touch and go (TGO) training cycles and Field Carrier Landing Practice (FCLP) is developed in Ref. 10. The development of the three-dimensional LTO cycle provides more realistic estimates of the total emissions due to aircraft operations. In addition, for Navy operations, Figure 1. IFR APPROACH AND DEPARTURE SIMULATION OF USN FCLP PATTERN SIMULATION OF USN VFR BREAK ENTRY FIGURE 2. VFR FLIGHT SIMULATIONS it was required to expand AQAM to include autorotations and the off runway environment so that rotary wing aircraft operations could be simulated. Many Naval Air Stations possess a large complement of rotary wing aircraft. These aircraft operate almost exclusively below 3000 feet while in the vicinity of the airfield. Rotary wing aircraft utilize the VFR, TGO and FCLP patterns described in Ref. 10, but at lower altitudes and speeds. Helicopters also operate in specified areas away from the runway environment. These areas are normally called "pads," and the training which occurs is referred to as "pad work" and "hover work." Since training "pads" are often utilized for fifty per cent of any helicopter operational cycle, the inclusion of "pad work" and "hover work" in both the Source Inventory Program and Short-term Program was necessary. AQAM limited aircraft refueling from fuel trucks to the aircraft parking areas. Reference 10 extended AQAM to include "the pressure refueling of aircraft with their engines running," termed "hot refueling." This original modification was not consistent with the model format nor did it account for delays in entering the hot refuel area. Also, another type of refueling exists, termed "pit refueling." The latter procedure involves pressure refueling an aircraft after it has shutdown in a specified area (the pit) other than its normal parking area. The aircraft is then towed to its parking area after refueling. Therefore, servicing and shutdown emissions must be accounted for in the pit area and account must be made for aircraft delays in entering the pit area. Another aspect of aircraft operations, military or commercial, which should be included in any LTO cycle is the take-off delay which occurs at the end of the runway. This delay can be quite extensive as it involves pre-flight checks, IFR clearance changes, safe separation of aircraft, and formation flight join-up. This delay was not modeled in AQAM as it was not part of the EPA and USAF LTO cycles. The requirements to change the aircraft related portions of AQAM were generated by the differences between commercial, USAF and USN aircraft operations. Due to special training requirements to ensure safe operations aboard ship, the USN developed a much larger LTO cycle which required three-dimensional models to simulate air operations. The models for non-aircraft activity were not changed since air base parameters are relatively consistent from base to base, and the environ parameters were flexible since the environment cannot be predicted a priori from base to base. #### IV. ADAPTATIONS ACCOMPLISHED The initial modifications made to adapt AQAM to represent Naval air operations are described in Ref. 10. These modifications nulled level line sources that existed above the mixing depth, keyed calculations to aircraft operations on a runway, added hot refueling as an area source and expanded the LTO cycle from two to three dimensions by developing crosswind and downwind aircraft flight paths to simulate VFR approaches, TGO cycles and FCLP cycles. Rotary wing aircraft operate in both a runway and off runway environment. The IFR, VFR, TGO and FCLP simulations described in Ref. 10 and depicted in Figures 1 and 2 adequately represent normal helicopter operations to a runway. However, pattern heights and lengths of crosswind legs are different for helicopters. One maneuver practiced by rotary wing pilots which is not represented by the latter simulations is the autorotation. An autorotation is the emergency procedure utilized to safely land a helicopter which has experienced a dual engine or tail rotor failure while in flight. Regulations require that this maneuver, when practiced, be conducted to a prepared surface (runway). An autorotation pattern is depicted in Figure 3. The helicopter climbs to 150 feet (Point 2) from a hover (Point 1) over the runway. At Point 2 the aircraft commences a climbing crosswind turn to downwind entry (Point 3). If SIMULATION OF USN HELICOPTER PAD WORK PATTERN SIMULATION OF USN HELICOPTER AUTOROTATION PATTERN FIGURE 3. HELICOPTER FLIGHT SIMULATIONS the crosswind turn is completed prior to 1000 feet the climb is continued to 1000 feet. The downwind leg is flown at 1000 feet, paralleling the runway until abeam the point of intended landing. As soon as safe separation between aircraft can be established a descending turn is commenced toward the runway (Point 4 to Point 5). The autorotation is entered anytime between point 4 and point 5 by going from a normal power setting to an idle power setting. The final leg is entered at 500 feet with the nose of the aircraft lined up with the centerline of the runway. On final, a flare is executed to arrive at zero to low airspeed over the intended point of landing. This hover altitude is modeled as 20 feet, but actually varies with helicopter type. The entire pattern is flown at 70 knots. If the autorotation is performed at a speed other than 70 knots, this speed is attained while in the downwind leg. In order to conduct extensive hover work for training purposes and to relieve the runway of congestion, helicopters often operate on pads which are adjacent to the runway. Flight patterns to and from these pads always parallel the flight pattern for the runway being utilized. A pad work pattern is depicted in Figure 3. The helicopter climbs to 150 feet (Point 2) from a hover over the pad (Point 1). At Point 2 a climbing crosswind turn is commenced to enter (Point 3) the downwind leg parallel to the pad at 500 feet. The downwind leg is continued until abeam the pad. As soon as safe separation between aircraft can be established a descending turn from Point 4 to Point 5 is executed. The final phase of the approach commences at 150 feet (Point 5), with the nose of the helicopter lined up with the center line of the pad. The helicopter adjusts power, and flares as necessary to arrive over the pad at zero or low speed in a 10 feet hover. The hover altitude can vary with training requirements but is most often in the 5 to 20 feet range. Hover work was modeled as an area source utilizing the X,Y coordinates of the pad and the length of the side of the operating area. Hover work involves a great deal of aircraft movement about all three axes; therefore, it is best modeled as an area rather than a point source. Helicopters must be timed by type while conducting hover work to establish an average time-in-mode hover. This time may then be used to determined total emissions and emission rates. Modification of AQAM to accept "hot refueling" and "pit refueling" options plus their associated delays was desired since these evolutions can be varied for pollution control at air stations. The Source Inventory Program was modified to accept a hot refuel delay area source, a hot refuel area source, a pit delay area source and a pit refuel area source. Observation indicated that certain refuel areas were used exclusively by specific aircraft. Therefore, each aircraft type was tagged to indicate its normal refuel procedure. Each refuel and delay operation was timed, and times in each area were assigned by aircraft type. Another evolution which can be varied for pollution control is the take off delay at the end of the runway. This delay was incorporated into the LTO cycle for USN aircraft operations and was modeled in the same area as the engine check area source. Dwell times in this mode of operation were measured and assigned by aircraft type. AQAM, when first received, used only JP4 fuel parameters to model jet fuel. Since the Navy utilizes JP5 fuel, the JP5 fuel parameters were added to the model in place of the JP4 parameters. Fuel parameters affect vapor pressure and are significant in determining hydrocarbon evaporative losses. The Short-term Program was modified to accept level line sources at or above an inversion layer as null sources [Ref. 10_7. This modification was extended to any line sources which existed entirely above an inversion layer, be they level or skewed lines. The Short-term Program limited the number of grid receptors to 312. This number was insufficient to delineate the environ sources about the air station. Therefore, the number of grid receptors was increased to 412. Since ADAM was developed for the USAF, it did not have a runway roll (take-off) equation for the F-14 aircraft. The following series of equations were developed for the F-14 using the least squares procedures specified in Ref. 12. (Dimensionless) TOF = $$(0.0001xT^2)+(0.0002xPA+0.0040)xT + (0.0001xPA^2+0.0181xPA+0.3100)$$ (ft) $$GR = (0.0121xGW-206.6421)xTOF + (0.0350xGW-3.106.3345)$$ - (ft) FGR = GR (0.0087xGR + 6.4583)xWS - T is in degrees Fahrenheit. - PA is in hundreds of feet. - GW is in pounds. - WS is in knots. The take off factor (TOF) is calculated from the temperature (T) and pressure altitude (PA) which are specified in the meteorological data. Ground run (GR) is then calculated from the TOF and aircraft gross weight (GW), an LTO cycle input parameter. The final ground run (FGR) is calculated from the GR and the projection of the wind speed (WS) vector on the runway. #### V. DATA ACQUISITION NAS Miramar, California, was selected as the site for data collection for the high intensity air operations conducted, representative on-base facilities and off-base residential/industrial environment. NAS Miramar is one of the most active air stations in the United States. Total aircraft operations (arrivals + departures + TGOs +
FCLPs) exceeded 200,000 for 1975. In addition the air station has a large fuel farm, many service and training facilities, much on-base vehicular traffic, engine test cells and base housing. Also, many environ emission sources exist in close proximity to NAS Miramar. Three major highways border the air station to the east, north and southwest. Industrial sites are north and south and residential areas lie to the north, southeast and southwest of the air station. This interplay of aircraft, air base facilities and off air base environment is indicative of many commercial and military airfields today and is the reason the contribution of each source to air quality must be determined. Tables I and III through VI depict the sources analyzed at NAS Miramar. The initial collection of data at NAS Miramar provided a data base for aircraft operating parameters and meteorological parameters _Ref. 10_7. This data base was the TABLE III POINT SOURCES AT NAS MIRAMAR | SOURCE | BLDG. NO. | |----------------|-----------| | TRAINING FIRES | к118 | | TEST CELLS | 545 | | | 463 | | | 462 | | | 542 | | | 565 | | RUN UP STANDS | 589 | | | 419 | | POWER PLANT | K212 | | STORAGE TANKS | 935 | | | 940 | | | 936 | | | 319 | | | 483 | | | K230 | TABLE IV AREA SOURCES AT NAS MIRAMAR | SOURCE | LOCATION | |--------------------|--| | FUEL WORKING | K231
K234
K229
M319
K214
498 | | FUEL STORAGE | FUEL TANK FARM
TEST CELL FUEL TANKS
QUALITY CONTROL TANK | | TANK TRUCK PARKING | NEAR 592
NEAR K229 | | VEHICLE PARKING | TEN AREA SOURCES INCORPORATE ALL BASE PROPER PARKING BETWEEN THE FLIGHT LINE AND NORTH GATE. | | SPACE HEATING | BASE HOUSING
MOBILE HOMES
PROPANE USERS | | GROUND MOBILE* | SAME AREAS AS VEHICLE
PARKING AND SPACE
HEATING. | ^{*}VEHICULAR EMISSIONS WHICH OCCUR WHILE TRAVELING TO OR FROM A MAJOR ROADWAY (LINE SOURCE) ARE CONSIDERED AREA SOURCES. #### TABLE V ### LINE SOURCES AT NAS MIRAMAR #### ROADWAY MIRAMAR WAY POLARIS AVENUE MITSCHER WAY JUPITER ROAD RIGEL AVENUE REGULUS AVENUE RAVEN ROAD (PORTION PARALLEL TO FLIGHT LINE) #### TABLE VI #### ENVIRON SOURCES SURROUNDING NAS MIRAMAR #### ROADWAYS INTERSTATE 805 HIGHWAY 15 MIRAMAR ROAD ## RESIDENTIAL AREAS* #### INDUSTRIAL AREAS* ^{*}RESIDENTIAL AND INDUSTRIAL SOURCES WERE MODELED USING LAND USE FACTORS SINCE A DATA BASE WAS NOT ESTABLISHED FOR THESE SOURCES. result of an existing twenty-five year history of meteorological data and over eighty hours of observations of aircraft operations. These observations provided definition of taxi paths, parking areas, dwell time in various operating modes, and recognition of the need for a three-dimensional LTO cycle to adequately assess the contribution to air quality of Naval aircraft operations. Later collections of data focused on the air station and the surrounding environment. Over sixty hours of data collection provided a sound data base for the air station. An adequate data base for the environment bordering NAS Miramar was not established except for the major highways bordering the air station. Data were collected from existing records, by interviews and by observation. An extensive amount of raw data must be collected to describe each source. AQAM estimates of air quality are probably more dependent on the data input to the model than on any limitations to the simulations used to describe dispersion and operations _Ref. 6_7. Since every air station is physically different, and possesses different aircraft and surroundings, a complete data survey is required to satisfy the input data requirements for each source. #### VI. RESULTS AND DISCUSSION Once modified, the Source Inventory Program and the Short-term Program provided an ambient air quality model for assessment of U.S. Naval aviation emittants. The model was utilized to conduct seven simulations of operations at NAS Miramar. These simulations are summarized in Table VII and permitted a parametric analysis of the relationships between the broad categories of aircraft, air base and environ sources. Finally, using the total sources, an attempt was made to distinguish the subtle interplay of the primary source categories to the overall ambient air quality about NAS Miramar. The meteorological and temporal parameters were held constant for each case. These parameters are tabulated in Table VIII. Case 1 was established as the base case and represented operations as they are normally conducted at NAS Miramar. Changes to the source parameters of Case 1 constituted the remaining cases. Case 2 provided a better estimate of the emissions from sources surrounding NAS Miramar. Land use factors were used to provide an order of magnitude estimate \(\subseteq \text{Ref. 6_7} \) of these environ sources, since better data were not available. Case 3 removed the take off delay, pit refuel delay, hot refuel delay, pit refuel and hot refuel # TABLE VII SIMULATIONS OF OPERATIONS AT NAS MIRAMAR | CASE | DESCRIPTION | |------|--| | 1 | BASE CASE. INCLUDES ALL AIRCRAFT SOURCES, AIR BASE SOURCES AND HIGHWAY TRAFFIC ADJACENT TO THE AIR BASE. | | 2 | BASE CASE PLUS LAND USE FACTORS TO MODEL RESIDENTIAL/INDUSTRIAL ENVIRON SOURCES. | | 3 | BASE CASE MINUS TAKE OFF DELAY, PIT REFUEL DELAY, HOT REFUEL DELAY, PIT REFUEL AND HOT REFUEL EMISSIONS. | | 4 | BASE CASE EXCEPT TEST CELLS AND RUN UP STANDS EMITTING A FULL DAYS POLLUTION IN ONE HOUR, AIR BASE SOURCES ZEROED. | | 5 | BASE CASE MINUS ENGINE TEST CELLS AND RUN UP STANDS. | | 6 | BASE CASE PLUS HYDROCARBON WORKING LOSSES. | | 7 | BASE CASE MINUS TAKE OFF DELAY, PIT REFUEL DELAY AND HOT REFUEL DELAY SOURCES. | ### TABLE VIII ## METEOROLOGICAL AND TEMPORAL DATA ## METEOROLOGICAL PARAMETERS | TEMPERATURE (DEGREES FAHRENHEIT) | 65.0 | |----------------------------------|-------| | MIXING DEPTH (METERS) | 800.0 | | WIND DIRECTION (DEGREES) | 200.0 | | WIND SPEED (METERS/SECOND) | 2.57 | | STABILITY CATEGORY | 2 | ## TEMPORAL DATA | YEAR | | | | | | 1975 | |----------|-----------|-------|----|---|---------|------| | MONTH | | | | | | MAY | | PERIOD | 1200-1300 | HOURS | ON | A | WEEKDAY | | | HOUR INI | DEX | | | | | 13 | emissions. This procedure placed all refueling and servicing emissions in the aircraft parking areas, which was consistent with the original AQAM. Case 4 was a "worst case" study of the emissions from engine test cells and run up stands. As an approximation, the emissions for the entire day from each test cell/run-up stand were considered to be released in the hour under consideration. This corresponded to emissions from approximately eight minutes of operation for each run-up stand and eighty minutes of operation for each test cell. All other air base sources had zero emissions. Case 5 established the pollution caused by the air base without the engine test cells and run up stands in operation. Case 6 established the hydrocarbon working losses that would occur if vapor recovery systems were not utilized by NAS Miramar. Case 7 removed the take-off delay, pit refuel delay and hot refuel delay sources to study the effects of aircraft delays on ambient air quality. The Source Inventory Program provides a summary of the annual emissions by source. This summary is presented in Tables IX through XI for Case 1. In addition, the effect of the environ sources when land use factors are added is depicted in Table XII. The parameters which define each case can be interpreted from these tables. Source Inventory summaries can only be used to establish the qualitative importance of a source to ambient air quality since the emissions have not been dispersed in time and space. TABLE IX CASE 1 - SUMMARY OF AIRCRAFT SOURCE EMISSIONS SUMMARY OF ANNUAL EMISSIONS IN AIRCRAFT LTO MODES ALL POLLUTANTS IN METRIC TONS | | | | | · | | |--------------|-----------|-----------|-----------|-----------|-----------| | OPERATION | 잉 | HC | NOX | PM | SOX | | STARTUP | 8.979E 01 | 3.627E 01 | 4.623E 00 | 4.136E 01 | 52E-0 | | TAKEOFF DIV | 610E 0 | .768E 0 | . 536E 0 | ・ | .729E-0 | | ENGINE CHECK | .548E 0 | .149E-0 | .100E 0 | .421E 0 | 10 | | | ·648E 0 | .023E 0 | ·764E C | .246E 0 | .681E-0 | | CLIMB (1+2) | .180E 0 | .056E 0 | .454E 0 | .059E 0 | .383E-0 | | | .40IE 0 | .161E 0 | .325E 0 | .160E 0 | .650E-0 | | APPROACH VFR | .325E 0 | .332E 0 | .107E 0 | .57LE 0 | .198E-0 | | LANDING | .628E 0 | .880E 0 | .482E 0 | .236E 0 | .600E-0 | | | .242E 0 | .558E 0 | .35年 0 | .29LE 0 | .059E-0 | | (HR+PIT) DLY | .527E 0 | .383E 0 | .756E 0 | .959E 0 | 0 | | HOT REFUEL | .634E 0 | .198E 0 | .678E 0 | .846E 0 | • | | SHUTDOWN | .918E 0 | .331E 0 | .100E 0 | .021E 0 | • | | ARR + DEP SV | .399E 0 | .626E 0 | .142E 0 | 0. | 0. | | FUEL VENTING | 0 | 0 | • | • | • | | FILL + SPILL | 0. | .762E-0 | • | • | • | | TGO PATTERN | .45 | • | .494臣 | .294E 0 | • | | FCLP PATTERN | .793医 0 | .256E 0 | .106E 0 | .45 | • | | PAD WORK | 0 | 0 | • | 0. | • | | HOVER WORK | • | • | • | • | • | | AUTOROTATION | • | • | • | | • | | TOTAL | 2.638E 03 | 9.511E 02 | 7.367E 02 | 2.339E 03 | 1.475E 00 | TABLE X CASE 1 - SUMMARY OF AIR BASE SOURCE EMISSIONS ## SUMMARY OF ANNUAL EMISSIONS FROM AIR BASE FACILITIES ALL POLLUTANTS IN METRIC TONS | | OPERATION | 잉 | H | NOX | M | SOX | |-----|---------------|----------------|-----------------------------|----------------------------------|--|-----------| | | TRAIN FIRES | 2.096E 01 | 1.198E 01 | 1.553E-01 | 4.791E 00 | 0.0 | | | TEST CELLS | 1.587E 02 | 1.768E 01 | 1.094E 02 | 1.45SE 02 | 0.0 | | | RUN-UP STDS | 4.799E-01 | 1.869E-01 | 4.587E-01 | 8.019E 00 | 3.893E-02 | | | POWER PLANTS | 5.120E-04 | 5.120E-02 | 2.248E-01 | 2.320E-02 | 7.680E-04 | | | INCINERATORS | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | | OTHER AB PTS | 0.0 | 0.0 | 0.0 | 0.0 | 0.0
 | | SPACE HEATING | 2.880E-03 | 1.152E-03 | 1.765E-01 | 2.718E-03 | 8.640E-05 | | | TOTAL | 1.802E 02 | 2.990E 01 | 1.104E 02 | 1.584E 02 | 3.978E-02 | | 3 k | S | SUMMARY OF ANN | UAL EMISSIONS
ALL LOSSES | FROM EVAPORATI
IN METRIC TONS | RY OF ANNUAL EMISSIONS FROM EVAPORATIVE HYDROCARBONS ALL LOSSES IN METRIC TONS | Ø | OTHER 0.0 SPILLAGE 0.0 FLOATING ROOF BREATHING LOSS 0.0 0.0 FIXED ROOF BREATHING LOSS 3.280E 00 6.175E-01 5.291E 01 9.762E-01 WORKING LOSS 6.418E 00 PET. STOR.TKS TNK. TRUCK PK VEH. PARKING OTHERS STORAGE TANKS OPERATION FILLING TOTAL EMISSIONS FROM EVAPORTIVE HYDROCARBONS IS 6.420E O1 METRIC TONS TABLE X (CONTINUED) SUMMARY OF ANNUAL EMISSIONS FROM GROUND MOBILE SOURCES | Ď | | AL | I POLLUTANTS | ALL POLLUTANTS IN METRIC TONS | | | |----------------------------|------------------|----|------------------|-------------------------------|------------------|------------------| | OPERATION | 00 | | HC | NOX | M | SOX | | OFF ROAD VEH | 1.526E | 00 | 2.307E-01 | 2.759E 00 | 4.838E-02 | 9.677E-02 | | CIVILIAN VEH | 1.833E | 01 | 1.703E 00 | 1.340E 00 | 2.333E-01 | 8.045E-02 | | CIV.VEH. LINE OTHER ABLINE | 3.293E 02
0.0 | 02 | 3.585E 01
0.0 | 6.007E 01
0.0 | 8.320E 00
0.0 | 2.869E 00
0.0 | | TOTAL | 3.491E 02 | 02 | 3.778E 01 | 6.416E 01 | 8.602E 00 | 3.046E 00 | TABLE XI CASE 1 - SUMMARY OF ENVIRON AND TOTAL SOURCE EMISSIONS ## SUMMARY OF ANNUAL EMISSIONS FROM ENVIRONS ALL POLLUTANTS IN METRIC TONS | SOX | 0.0
0.0
0.0
0.0
6.33E 01 | 6.333E 01 | | SOX | 1.475E 00
3.046E 00
3.978E-02
6.333E 01 | 6.789E 01 | |-----------|---|-----------|------------------------------------|-----------|--|-------------| | æ | 0.0
0.0
0.0
0.0
1.837E 02 | 1.837E 02 | SNS | P | 2.339E 03
8.602E 00
1.584E 02
1.837E 02 | 2.690E 03 | | NOX | 5.190E 00
0.0
0.0
0.0
1.616E 03 | 1.621E 03 | ANNUAL EMISSIONS
IN METRIC TONS | NOX | 7.367E 02
6.416E 01
1.104E 02
1.621E 03 | 2.533E 03 | | 윘 | 2.000E-01
0.0
0.0
0.0
5.804E 02 | 5.806E 02 | SUMMARY OF ALL ALL POLLUTANTS | 위 | 9.511E 02
3.778E 01
9.410E 01
5.806E 02 | 1.664E 03 | | 잉 | 1.376E 01
0.0
0.0
0.0
4.850E 03 | 4.864E 03 | 01 4 | 임 | 2.638E 03
3.491E 02
1.802E 02
4.864E 03 | 8.032E 03 | | OPERATION | ENVIRON PTS. ENV STA AREA ENV MOB AREA ENV LAND USE ENV COM AREA ENV ROAD WAY | TOTAL | | OPERATION | AIRCRAFT
GROUND MOBIL
FACILITIES
ENVIRONS | GRANT TOTAL | TABLE XI (CONTINUED) PERCENT OF EMISSIONS FROM ALL SOURCES | OPERATION CO
AIRCRAFT 32.848 | HC
57.171 | NOX
29.089 | PM 86.964 | SOX 2.173 | |---------------------------------|--------------|---------------|-----------|-----------| | 4.347 | 2.271 | 2.533 | 0.320 | 7. 7 | | 2.243 | 5.657 | 4.358 | 5,888 | 0.05 | | 195 | 106.46 | 64.020 | 6.829 | 93.28 | TABLE XII CASE 2 - SUMMARY OF ENVIRON AND TOTAL SOURCE EMISSIONS | OPERATION
ENVIRON PTS. | <u>co</u>
1.376E ol | HC
2.000E-01 | NOX
5.190E 00 | AL O | SOX 0.0 | |---|--|--|--|--|--| | ENV STA AREA ENV MOB AREA ENV LAND USE ENV COM AREA ENV ROAD WAY ENV NON-ROAD | 0.0
0.0
9.278E 04
0.0
4.850E 03 | 0.0
0.0
1.792E 04
0.0
5.804E 02 | 0.0
0.0
7.215E 03
0.0
1.616E 03
0.0 | 0.0
0.0
3.024E 03
0.0
1.837E 02
0.0 | 0.0
0.0
3.864E 03
0.0
6.333E 01 | | TOTAL | 9.764E 04 | 1.850E 04 SUMMARY OF ALL | 8.836E 03 ANNUAL EMISSIONS TH METRIC TONS | 3.207E 03 | 3.927 E 03 | | OPERATION | 00 | 汨 | XON | FW. | SOX | | AIRCRAFT
GROUND MOBIL
FACILITIES
ENVIRONS | 2.638E 03
3.491E 02
1.802E 02
9.764E 04 | 9.511E 02
3.778E 01
9.410E 01
1.850E 04 | 7.367E 02
6.416E 01
1.104E 02
8.836E 03 | 2.33% 03
8.602E 00
1.584E 02
3.207E 03 | 1.475E 00
3.046E 00
3.978E-02
3.927E 03 | | GRAND TOTAL | 1.008E 05 | 1.958E 04 | 9.747E 03 | 5.713E 03 | 3.932E 03 | TABLE XII (CONTINUED) PERCENT OF EMISSIONS FROM ALL SOURCES | SOX | 0.038
0.077
0.001
99.884 | |-----------|--| | WA | 40.939
0.151
2.772
56.138 | | NOX | 7.558
0.658
1.132
90.651 | | HC | 4.856
0.193
0.481
94.470 | | 잉 | 2.617
0.346
0.179
96.858 | | OPERATION | AIRCRAFT
GROUND MOBIL
FACILITIES
ENVIRONS | The Short-term Program takes the source data, emission strengths, meteorological data and temporal data and disperses the source emissions in time and space. These concentrations, which are collected over the receptor grid system, determine a sources contribution to ambient air quality. Table XIII compares the maximum 1-hour receptor concentration from aircraft sources at NAS Miramar. For the receptor locations employed, removing aircraft delays (Case 7) reduced the maximum pollutant concentrations by only 2 per cent. However, Table IX shows that elimination of aircraft delays can reduce CO and HC yearly emissions by approximately 21 per cent and particulates by approximately 13 per cent. Case 3 eliminates the aircraft delays and puts all refueling in the parking areas. The maximum hourly concentrations occurred at the same receptor location (12, 9) as for Cases 1 and 7, but increased by approximately 17 per cent. This higher concentration results from receptor (12, 9) being located nearer to the parking area than to the hot refueling or pit refueling areas. Comparison of Cases 1, 3, and 7 shows that refueling in the parking areas increases the local ambient air concentrations of each pollutant in the parking area but decreases annual emissions of each pollutant by approximately 8 per cent. Locations of pertinent receptors are presented in Figure 4. Table XIV compares the maximum 1-hour receptor concentration from <u>air base sources</u> at NAS Miramar. Case 1 and Case 5, TABLE XIII MAXIMUM 1-HOUR RECEPTOR CONCENTRATION (CHI) FROM AIRCRAFT SOURCES AT NAS MIRAMAR | POLLUTANT | | | CASE 1 | 73 | CASE 3 | | 70 | CASE 7 | | |--------------------|------|-----------|---------------------------------|-----------|-----------|-----------------------------|-----------|-----------|--------------------------| | | (km) | Y
(km) | Y CHI (km) (µg/m ³) | X
(km) | Y
(km) | CHI
(µg/m ³) | X
(km) | Y
(km) | CHI (µg/m ³) | | CARBON MONOXIDE | 12.0 | 0.6 | 214.8 | 12.0 9.0 | 0.6 | 250.2 | 12.0 9.0 | 0.6 | 213.2 | | HYDROCARBONS | 12.0 | 0.6 | 80.99 | 12.0 | 0.6 | 95.03 | 12.0 | 0.6 | 19.64 | | OXIDES OF NITROGEN | 12.0 | 0.6 | 17.77 | 12.0 | 0.6 | 18.87 | 12.0 | 0.6 | 17.71 | | PARTICULATES | 12.0 | 0.6 | 125.1 | 12.0 | 0.6 | 126.3 | 12.0 | 0.6 | 124.8 | | OXIDES OF SULFUR | 12.0 | 0.6 | 9.0 0.04087 | 12.0 | 0.6 | 0.04087 | 12.0 | 0.6 | 0.04087 | TABLE XIV MAXIMUM 1-HOUR RECEPTOR CONCENTRATION (CHI) FROM AIR BASE SOURCES AT NAS MIRAMAR | | H; (m) | -67 | 0 | 36 | ,03 | 1713 | |-----------|---|--------------------|-------------------|----------------------|-------------------|---------------------| | 9 | (KE) | 4.1 | 11.3 | 2.6 | 3.7 | 0.0 | | CASE 6 | Y
(km) | 13.0 11.0 4.167 | 12.0 10.0 11.30 | 13.0 11.0 2.636 | 13.0 11.0 3.703 | 12.0 10.0 0.01713 | | | X
(km) | 13.0 | 12.0 | 13.0 | 13.0 | 12.0 | | CASE 5 | CHI (M E/m ³) | 12.0 10.0 1.177 | 12.0 10.0 8.580 | 12.0 10.0 0.4027 | 12.0 10.0 0.01711 | 12.0 10.0 0.01566 | | CAS | Х
(кm) | 10.0 | 10.0 | 10.0 | 10.0 | 10.0 | | | X
(km) | 12.0 | 12.0 | 12.0 | 12.0 | 12.0 | | CASE 4 | (km) (km) $(\mu g/m^3)$ (km) | 13.0 11.0 44.29 | .0 11.0 4.985 | 12.0 11.0 30.39 | .0 11.0 44.37 | .0 11.0 0.02135 | | CAS | Y
(km) | 11.0 | 11.0 | 11.0 | 11.0 | 11.0 | | | X
(km) | 13.0 | 13.0 | 12.0 | 13.0 | 13.0 | | CASE 1 | (km) (km) (km) $(\mu g/m^3)$ | 13.0 11.0 4.167 | 12.0 10.0 8.668 | 13.0 11.0 2.636 | 13.0 11.0 3.703 | 12.0 10.0 0.01713 | | CA | Y
(km) | 11.0 | 10.0 | 11.0 | 11.0 | 10.0 | | | X
(km) | 13.0 | 12.0 | 13.0 | 13.0 | 12.0 | | POLLUTANT | | CARBON
MONOXIDE | HYDRO-
CARBONS | OXIDES OF A NITROGEN | PARTICU-
LATES | OXIDES OF
SULFUR | together, indicate that the maximum local ambient concentrations (from air base sources) of carbon monoxide, oxides of nitrogen and particulates result, for this particular time period, from the engine test cells and run up stands. Source Inventory for these two cases also shows that test cell/run up stand operation contributes 30%, 14%, 63%, and 92% of the annual air base emissions of CO, HC, NOX and particulates, respectively. However, these values (when compared to the standards depicted in Table XV) indicate that test cells and run up stands by themselves produce less than one per cent of the 1-hour ambient air quality standards. The "worst case" (Case 4) values for engine test cells and run up stands are less than 7 per cent of the 1-hour ambient air quality standards. Case 1 and Case 6, together, depict the reduction in hydrocarbon emissions which result from the recent installation of vapor recovery systems at NAS Miramar. These systems caused a 30 per cent reduction in both the maximum receptor concentration and yearly total emissions of air base evaporative hydrocarbons. Table XVI compares the maximum 1-hour receptor concentration from environ sources surrounding NAS Miramar. Case 1 included the vehicular traffic emissions on Interstate 805, Highway 15 and Miramar Road. A sound data base exists for these sources. Case 2 included these emissions plus the emissions due to
industrial and residential activity based on Land Use factors. Reference 6 cautions that the Land Use TABLE XV AMBIENT AIR QUALITY STANDARDS (From Ref. 13) | POLLUTANT | STAI
µe, | NDARDS
/m ³ | | |--------------------|---------------------|---------------------------|--| | | California | Federal
Primary | | | CARBON MONOXIDE | 46,000 ¹ | 40,0001 | | | OXIDES OF NITROGEN | 470 ¹ | 1004 | | | HYDROCARPONS | NONE | 160 ² | | | PARTICULATES | 1003 | 260 ³ | | | OXIDES OF SULFUR | 1,310 ¹ | 365 ³ | | - 1-hour concentration not to be exceeded more than once per year. - 3-hour concentration not to be exceeded more than once per year. - 3. 24-hour concentration not to be exceeded more than once per year. - 4. Annual arithmetric mean. TABLE XVI MAXIMUM 1-HOUR RECEPTOR CONCENTRATION (CHI) FROM ENVIRON SOURCES NEAR NAS MIRAMAR | POLLUTANT | | CASE 1 | B 1 | : | CASE | E 2 | | |--------------------|-----------|-----------|----------------|-----------|-----------|-----------------------------|--| | | X
(km) | Y
(km) | CHI
(µg/m³) | X
(km) | Y
(km) | CHI
(µg/m ³) | | | CARBON MONOXIDE | 13.0 | 13.0 13.0 | 8.507 | 11.0 | 5.0 | 650.7 | | | HYDROCARBONS | 10.0 | 12.0 | 1.081E-03 | 0.11 | 3.0 | 202.2 | | | OXIDES OF NITROGEN | 10.0 | 12.0 | 2.806E-02 | 11.0 | 3.0 | 56.35 | | | PARTICULATES | 13.0 | 13.0 | 1.855E-04 | 11.0 | 3.0 | 49.10 | | | CYIDES OF SULFUR | 13.0 | 13.0 | 8.746E-06 | 11.0 | 5.0 | 59.63 | | factors utilized to define environ activity can provide only an order of magnitude estimate of the actual concentration of pollutants. Therefore, the results for Case 2 in Table XVI may not be accurate and should be used with caution. Table XVII presents data from <u>all sources</u> for cases 1 and 2. Again, the unreliability of the Land Use factors to accurately describe the environ sources prevents an accurate estimation of the interplay between aircraft and air base sources with the environ sources. The Table does indicate that aircraft sources dominate the maximum pollutant concentration's on the air base and dominate the maximum concentration of particulates throughout the receptor grid system. More data are required to define the environment prior to establishing the interplay of the three emission sources. To permit analysis of more than just those receptors with maximum pollutant concentrations the entire receptor grid system for each primary source category is presented as Appendix A for Case 2. TABLE XVII MAXIMUM 1-HOUR RECEPTOR CONCENTRATION (CHI) FROM TOTAL* SJURCES ABOUT NAS MIRAMAR | |)
) | | | | | | |--------------------|-----------|-----------|----------------|-----------|-----------|----------------| | Pollutait | | CA | CASE 1 | | CAS | CASE 2 | | | X
(km) | Y
(km) | CHI
(µg/m³) | X
(km) | Y
(km) | CHI
(µg/m³) | | CARBON MONOXIDE | 12.0 9.0 | 0.6 | 215.2 | 11.0 | 5.0 | 650.8 | | HYDROCARBONS | 12.0 | 0.6 | 81.37 | 11.0 | 3.0 | 202.2 | | OXIDES OF NITROGEN | 12.0 | 0.6 | 17.79 | 11.0 | 3.0 | 56.35 | | PARTICULATES | 12.0 | 0.6 | 125.1 | 12.0 | 0.6 | 129.5 | | OXIDES OF SULFUR | 12.0 | 10.0 | 0.05178 | 11.0 | 5.0 | 59.63 | | | | | | | | | *AIRCRAFT + AIR BASE + ENVIRONS ## VII. CONCLUSIONS AND RECOMMENDATIONS Modifications to AQAM have enhanced the accuracy for predictions related to U.S. Naval Aircraft operations. The capacity of the air quality model to qualitatively relate the various emission sources exists at this stage in the model's development. The capacity of the model to quantitatively predict the ambient air quality through space and time must yet be verified by actual measurement. The model can assist in the verification process. For a given set of meteorological data and temporal distributions the model can indicate the best receptor locations for optimizing data collection devices. Using the meteorological and temporal parameters of Table VIII and Cases 1 through 7, the best locations for receptors appear to be just south of the jet engine maintenance shop, just north of toyland and just north of the Miramar Road/Highway 15 intersection. mefore the interplay of aircraft, air base and environ emissions can be established at NAS Miramar a data base for the environ sources must be established. In addition, the data base for the aircraft and air base sources must be updated to represent 1976. Recurring updates of any data base must occur or the quantitative results of the model will not represent the actual situation. The model should be modified to provide contour mapping of pollutant concentrations over the grid of receptors. Parametric studies conducted under differing meteorological and temporal distributions could then be visualized to indicate sources of high, medium and low concentrations. Then, parametric studies could be conducted by varying operational factors and source parameters to establish the combination which would provide the lowest pollution level. APPENDIX A - AIRCRAFT, AIR BASE, ENVIRON AND TOTAL GRID RECEPTOR CONCENTRATIONS FOR CASE 2 NAS PIRAPIF FERICE . 1200 TC 1300 HOURS ON A WEEKDAY PENTH - PAY | ECEFTOR CONCENT | F LCCATION I | × × × × × × × × × × × × × × × × × × × | 000 | | 2000 | | 000 | | 000 | | # W P P P P P P P P P P P P P P P P P P | 000
000
000 | 200 | 000
000
000 | |-----------------|--------------|---------------------------------------|-----|----------|--|---|--|------------------|------------|---|---|--|---|--------------------------------------| | RATION DA | | 00 | 000 | 232E-021 | 243
243
259
259
259
259
259
259
259
259
259
259 | 027E
482E
809E
0 | 36.2E
55.4E
6.56E
0 | 402E 0 | 969E-06 | 950E 01
434E 01
828E 01 | 855E 01
777E 91
752E 91 | | 2 5 8 E 00 I | 750E-05 | | TA FROM ENV | EXPECT | F) | 000 | 900- | 600
600
600
600
600
600
600 | 2.578E
2.616E
000 | 4000
1000 | 4-240E-01 | | 6.972E 00
1.312E 01
1.205E 01 | 6-6-3-3-6-0-1
6-6-3-3-6-0-1
6-2-3-6-0-1 | 1.368E
0.055E
0.055E | 1.00EE 00
9.260E-01 | 0.0
0.0
0.0
-6.578E-06 | | IRON SCLECES | EC ARITHETIC | GRAMS/CL. M | 000 | 2.641E-C | 744E- |
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000 | 8424
8424
8424
8426
8426
8426
8426
8426 | 1-732E-C1
0-0 | -3.005E-C7 | 2-84EE CO
4-921E CO | 2-7-21E
2-7-43E
2-7-05E
C0 | 8-917E-01- | 4-117E-61 | 0.0
0.0
-2.635E-CE | | | P. F. B.N. | ETER)
PT | 990 | | -3-21-6-05
-5-00-76-05
-6-02-6-01 | 2.036E-C1 | 5-106E-02 | 0.0
0.0 | | 5.557E-01
1.128E-00
1.036E-00 | 7-256E-01 | | 0.0546-02
0.0556-02 | -1.655E-CE | | |
 | 305 | 000 | 1-0 | ישונים | 12.00
12.00
12.00
12.00
12.00
12.00
13.00
13.00
13.00
13.00
13.00
13.00
13.00
13.00
13.00
13.00
13.00
13.00
13.00
13.00
13.00
13.00
13.00
13.00
13.00
13.00
13.00
13.00
13.00
13.00
13.00
13.00
13.00
13.00
13.00
13.00
13.00
13.00
13.00
13.00
13.00
13.00
13.00
13.00
13.00
13.00
13.00
13.00
13.00
13.00
13.00
13.00
13.00
13.00
13.00
13.00
13.00
13.00
13.00
13.00
13.00
13.00
13.00
13.00
13.00
13.00
13.00
13.00
13.00
13.00
13.00
13.00
13.00
13.00
13.00
13.00
13.00
13.00
13.00
13.00
13.00
13.00
13.00
13.00
13.00
13.00
13.00
13.00
13.00
13.00
13.00
13.00
13.00
13.00
13.00
13.00
13.00
13.00
13.00
13.00
13.00
13.00
13.00
13.00
13.00
13.00
13.00
13.00
13.00
13.00
13.00
13.00
13.00
13.00
13.00
13.00
13.00
13.00
13.00
13.00
13.00
13.00
13.00
13.00
13.00
13.00
13.00
13.00
13.00
13.00
13.00
13.00
13.00
13.00
13.00
13.00
13.00
13.00
13.00
13.00
13.00
13.00
13.00
13.00
13.00
13.00
13.00
13.00
13.00
13.00
13.00
13.00
13.00
13.00
13.00
13.00
13.00
13.00
13.00
13.00
13.00
13.00
13.00
13.00
13.00
13.00
13.00
13.00
13.00
13.00
13.00
13.00
13.00
13.00
13.00
13.00
13.00
13.00
13.00
13.00
13.00
13.00
13.00
13.00
13.00
13.00
13.00
13.00
13.00
13.00
13.00
13.00
13.00
13.00
13.00
13.00
13.00
13.00
13.00
13.00
13.00
13.00
13.00
13.00
13.00
13.00
13.00
13.00
13.00
13.00
13.00
13.00
13.00
13.00
13.00
13.00
13.00
13.00
13.00
13.00
13.00
13.00
13.00
13.00
13.00
13.00
13.00
13.00
13.00
13.00
13.00
13.00
13.00
13.00
13.00
13.00
13.00
13.00
13.00
13.00
13.00
13.00
13.00
13.00
13.00
13.00
13.00
13.00
13.00
13.00
13.00
13.00
13.00
13.00
13.00
13.00
13.00
13.00
13.00
13.00
13.00
13.00
13.00
13.00
13.00
13.00
13.00
13.00
13.00
13.00
13.00
13.00
13.00
13.00
13.00
13.00
13.00
13.00
13.00
13.00
13.00
13.00
13.00
13.00
13.00
13.00
13.00
13.00
13.00
13.00
13.00
13.00
13.00
13.00
13.00
13.00
13.00
13.00
13.00
13.00
13.00
13.00
13.00
13.00
13.00
13.00
13.00
13.00
13.00
13.00
13.00
13.00
13.00
13.00
13.00
13.00
13.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00 | | 4-367E-02 | | 1.24:00
1.24:00
1.24:00
00
00
00
00 | 104 | 1244
1444
1444
1404
1404
1404
1404
1404 | 44-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0- | -100
-100
-100
-100
-100 | PENTH = PAY FERICE = 1200 TO 1200 HOURS ON A WEEKDAY | | | ECEFTOR CON | CENTRATICN CA | ITA FROM ENVI | PON SCLECES | | | |-------------------|-------------------|-------------------|-------------------------------------|--|---|-------------------------------------|---------------------------------| | FECETOR
AUPREF | RECEPTOR | LCCATICA | | EXPECTE | EC ARITHETIC | HEAN | | | | KELCPE | TEFS) | 8 | FICE | GRAMS/CL. P | TEP) FT | \$C2 | | W.C. | 90 | 800
800
800 | 364E-0 | 352E-0 | 1.9346-68 | 105E-0 | 6.00
2.1256-03 | | 444
Owl/ | 000 | 000 | 1-050E 02
9-175E 01 | 613E | 7-25
6-51
6-51
6-51
6-61
6-61
6-61
6-61
6-6 | 24.0
24.0
24.0
24.0
200 | 004 | | 444
61470 | 500
500 | 000 | 5.510E 01
1.437E 01 | 3-843E 000
2-536E 000 | | | 2002
0002
0002
111 | | 444 | 000 | 500 | 1.218E 01
9.824E 01 | 000
000
000
000
000
000
000
000 | 1111 | 200 | 752 | | 4NIU | 990
900 | 900 | .002E-0 | 2665 | 0.0
-2.273E-C5 | -SSE-0 | 8E-0 | | ושושו | 000 | 000 | 2.355
1.10011
1.1006
1.000 | 9406-0 | 3756-6 | UNUNN. | 1 -44 | | 8140E | one
one | 000 | 527E 02
565E 02
534E 02 | | H31 8 | 4000
MMM | 000
000
000
000 | | 1010.0
1010.0 | 000
000
000 | 000 | | 000
000
000 | 1.037E S1 | | 200
000
000
000
000 | | | 000
000 | 500 | -273E
-996E
-766E | | 1:219 | 8/00-
00-4
000- | 44W) | | 4810 | 000
000 | 800 | 000
000
000 | 99326 | 1:16ff CG | N00 | | | - | 999
999 | 000 | -1.562E-03 | | 1:19:1-61 | 10-3175
2175-01 | | | P-1. | 900 | 600
600 | 1-406E 02
1-607E 02 | 25.
49.
49.
49.
49.
49.
49.
49.
49.
49.
49 | 1:335 51 | 325 | 000
000
000 | | 7 | 88 | #V | mm
00 | 334E 81 | 1:3298 81 | 2 3546 88 | | FENTH = PAY FERIOC = 1260 TC 1300 HOURS CN & WEEKDAY | | 1 | ECEFTOR CON | CENTRATICA C | TA FROM EN | MON SCUFCE | | | |---|----------------------|---------------|--------------------------------------|--------------------------------------
---|--|--| | FECERTOR I | RECEPTOR | LCCATION | b-10-10- | EXPECT | EC ARITHETIC | FEAR | | | | KILCP | TEFS) | 00 | E L | GRAMS/CU. P | TEN) FT | 505 | | 15 | 4.00 | 16.00 | .165E Q | .088E 0 | .44EE 0 | 5.526E-G1 | 17 | | DP-10 | 444
000 | 0000 | WWW. | mmm | 2.095
2.095
6.66
6.00
6.00
6.00
6.00
6.00
6.00
6.0 | W-181 | | | 7-0-U | 44#/
000 | *** | .805E
.461E
0 | 945E
942E
0 | | | | | 888 M | 818181
000
000 | 0000 | 1.886E 01
-4.432E-03
5.082E 01 | 3.305E 00
-7.775E-04
8.916E 00 | -3-356E-C4 | 11-12-11-11-11-11-11-11-11-11-11-11-11-1 | 1 4 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | | STOP STOP | 000
000 | 900 | .377E
437E | 6-535E 00
2-428E 01
2-536E 01 | 1.002
1.002
1.003
1.003
1.003
1.003
1.003
1.003
1.003
1.003
1.003
1.003
1.003
1.003
1.003
1.003
1.003
1.003
1.003
1.003
1.003
1.003
1.003
1.003
1.003
1.003
1.003
1.003
1.003
1.003
1.003
1.003
1.003
1.003
1.003
1.003
1.003
1.003
1.003
1.003
1.003
1.003
1.003
1.003
1.003
1.003
1.003
1.003
1.003
1.003
1.003
1.003
1.003
1.003
1.003
1.003
1.003
1.003
1.003
1.003
1.003
1.003
1.003
1.003
1.003
1.003
1.003
1.003
1.003
1.003
1.003
1.003
1.003
1.003
1.003
1.003
1.003
1.003
1.003
1.003
1.003
1.003
1.003
1.003
1.003
1.003
1.003
1.003
1.003
1.003
1.003
1.003
1.003
1.003
1.003
1.003
1.003
1.003
1.003
1.003
1.003
1.003
1.003
1.003
1.003
1.003
1.003
1.003
1.003
1.003
1.003
1.003
1.003
1.003
1.003
1.003
1.003
1.003
1.003
1.003
1.003
1.003
1.003
1.003
1.003
1.003
1.003
1.003
1.003
1.003
1.003
1.003
1.003
1.003
1.003
1.003
1.003
1.003
1.003
1.003
1.003
1.003
1.003
1.003
1.003
1.003
1.003
1.003
1.003
1.003
1.003
1.003
1.003
1.003
1.003
1.003
1.003
1.003
1.003
1.003
1.003
1.003
1.003
1.003
1.003
1.003
1.003
1.003
1.003
1.003
1.003
1.003
1.003
1.003
1.003
1.003
1.003
1.003
1.003
1.003
1.003
1.003
1.003
1.003
1.003
1.003
1.003
1.003
1.003
1.003
1.003
1.003
1.003
1.003
1.003
1.003
1.003
1.003
1.003
1.003
1.003
1.003
1.003
1.003
1.003
1.003
1.003
1.003
1.003
1.003
1.003
1.003
1.003
1.003
1.003
1.003
1.003
1.003
1.003
1.003
1.003
1.003
1.003
1.003
1.003
1.003
1.003
1.003
1.003
1.003
1.003
1.003
1.003
1.003
1.003
1.003
1.003
1.003
1.003
1.003
1.003
1.003
1.003
1.003
1.003
1.003
1.003
1.003
1.003
1.003
1.003
1.003
1.003
1.003
1.003
1.003
1.003
1.003
1.003
1.003
1.003
1.003
1.003
1.003
1.003
1.003
1.003
1.003
1.003
1.003
1.003
1.003
1.003
1.003
1.003
1.003
1.003
1.003
1.003
1.003
1.003
1.003
1.003
1.003
1.003
1.003
1.003
1.003
1.003
1.003
1.003
1.003
1.003
1.003
1.003
1.003
1.003
1.003
1.003
1.003
1.003
1.003
1.003
1.003
1.003
1.003
1.003
1.003
1.003
1.003
1.003
1.003
1.003
1.003
1.003
1.003
1.003
1.003
1.003
1.003
1.003
1.003
1.003
1.003
1.003
1.003
1.003
1.003
1.003
1.003
1.003
1.003
1.003
1.003
1.003
1.003
1.003
1.003
1.003
1.003
1.003 | 45.2E 00
25.2E 00
25.2E 00 | | | - 98 e | 999
999
4441 | 000 | -626E
-802E
163E
0 | | 301E C | 500 | | | P. C. | 900
900
900 | 000 | 7.956E 01
4.666E 01 | 1.027E
0.154E
001154E | | 400
000
1004
1004 | | | A.W.A. | 000
000 | 000 | 3-852E 01
3-744E 01 | 7806
6458
6018
0 | 1 | | 7 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - | | 25.25
25.05 | 000
000
000 | 900
7-0 | 55E-6 | | 251E-045E | 040
969
969 | 0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0 | | 0000 | 000
000 | W-4-R/
000 | 2126
9106
1926 0 | | 500
800
800
800
800
800 | #100
#100
##100
##100 | 224
2842
3852
666
666 | | 000 | 999 | 900 | 335E 02
513E 02 | | 85
673
843
843
843
843
843
843
843
843
843
84 | 2004
2004
2004
2004 | 5-5 | | | 000 | 000
000 | 314E 02
454E 02 | | 440
420
mmm | 2.00
2.00 | | | 5 | 900
900 | MUM. | 4-9536 01
7-1006 01 | 0.54E 01
0.551E 00 | 2.2.2.4.
5.2.2.4.6.
6.00
6.00
6.00
6.00
6.00
6.00
6.00 | 1.5043E | | | • | | | | | | | | MCNTH = MAY PERICE = 1200 TC 1200 HOURS ON A WEEKDAY | | | ECEFTOR CON | CENTRATICN [| TA FROM SAV | IRCN SCLECE | | | |--------------------------------|------------|-------------|-----------------------------|--
---|---|-------------------------------------| | PECEFICA I | RECEFICE | LCCATION | p=10=10 | EXPECTI | EC ARITHETIC | C MEAN | | | | KTLCPE | ETEFS) | D) | N I | GRAMS/CL. PE | ETER) FT | | | 111 | 000 | 000 | 7 | 200 | 4.445E CO
0.0
-1.116E-C3 | 264E | 695E | | | 000 | 000 | 165E 02
104E 02 | 3000
0000
0000
0000
0000
0000 | 640E
624E | 344
244
344
344
344
344
344
344
344
344 | 9-36-26-0
5-05-76-0
6-705-6-0 | | 1116 | 000 | 000 | 785E
102E
0 | 9 4 9 E | 307E | 1 0.00
1 0.00
1 0.00
1 0.00 | 5806
2146
6976 | | -120)
1200
1410 | 000 | 10.00 | . 546
546 | | 1.550
1.550
1.950
1.950
1.950
1.950
1.950
1.950
1.950
1.950
1.950
1.950
1.950
1.950
1.950
1.950
1.950
1.950
1.950
1.950
1.950
1.950
1.950
1.950
1.950
1.950
1.950
1.950
1.950
1.950
1.950
1.950
1.950
1.950
1.950
1.950
1.950
1.950
1.950
1.950
1.950
1.950
1.950
1.950
1.950
1.950
1.950
1.950
1.950
1.950
1.950
1.950
1.950
1.950
1.950
1.950
1.950
1.950
1.950
1.950
1.950
1.950
1.950
1.950
1.950
1.950
1.950
1.950
1.950
1.950
1.950
1.950
1.950
1.950
1.950
1.950
1.950
1.950
1.950
1.950
1.950
1.950
1.950
1.950
1.950
1.950
1.950
1.950
1.950
1.950
1.950
1.950
1.950
1.950
1.950
1.950
1.950
1.950
1.950
1.950
1.950
1.950
1.950
1.950
1.950
1.950
1.950
1.950
1.950
1.950
1.950
1.950
1.950
1.950
1.950
1.950
1.950
1.950
1.950
1.950
1.950
1.950
1.950
1.950
1.950
1.950
1.950
1.950
1.950
1.950
1.950
1.950
1.950
1.950
1.950
1.950
1.950
1.950
1.950
1.950
1.950
1.950
1.950
1.950
1.950
1.950
1.950
1.950
1.950
1.950
1.950
1.950
1.950
1.950
1.950
1.950
1.950
1.950
1.950
1.950
1.950
1.950
1.950
1.950
1.950
1.950
1.950
1.950
1.950
1.950
1.950
1.950
1.950
1.950
1.950
1.950
1.950
1.950
1.950
1.950
1.950
1.950
1.950
1.950
1.950
1.950
1.950
1.950
1.950
1.950
1.950
1.950
1.950
1.950
1.950
1.950
1.950
1.950
1.950
1.950
1.950
1.950
1.950
1.950
1.950
1.950
1.950
1.950
1.950
1.950
1.950
1.950
1.950
1.950
1.950
1.950
1.950
1.950
1.950
1.950
1.950
1.950
1.950
1.950
1.950
1.950
1.950
1.950
1.950
1.950
1.950
1.950
1.950
1.950
1.950
1.950
1.950
1.950
1.950
1.950
1.950
1.950
1.950
1.950
1.950
1.950
1.950
1.950
1.950
1.950
1.950
1.950
1.950
1.950
1.950
1.950
1.950
1.950
1.950
1.950
1.950
1.950
1.950
1.950
1.950
1.950
1.950
1.950
1.950
1.950
1.950
1.950
1.950
1.950
1.950
1.950
1.950
1.950
1.950
1.950
1.950
1.950
1.950
1.950
1.950
1.950
1.950
1.950
1.950
1.950
1.950
1.950
1.950
1.950
1.950
1.950
1.950
1.950
1.950
1.950
1.950
1.950
1.950
1.950
1.950
1.950
1.950
1.950
1.950
1.950
1.950
1.950
1.950
1.950
1.950
1.950
1.950
1.950
1.950
1.950
1.950
1.950
1.950
1.950
1.950
1.950
1.950
1.950
1.950
1.950
1.950
1.950
1.950
1.950
1.950
1.950
1.950
1.950
1.950
1.950
1.950 | 2 - 6 - 6 - 6 - 6 - 6 - 6 - 6 - 6 - 6 - | 1.122E 01.1.122E 01.1.122E | | 48.9 | 000 | 000 | - 885E 0 | 245E | 951E | 000
000 | 200 | | | 900 | 000 | .196E
026E
029E | 1.804F 01 | | 24.0
24.0
3.0
3.0
3.0
3.0
4.0
5.0
5.0
5.0
5.0
5.0
5.0
5.0
5.0
5.0
5 | 44.76 | | | 000 | 000 | . 448E 0 | 640E | 000
000
000
000
000
000
000
000
000
00 | 2000
MMM | 144
144
144
144 | | 11)4U)
11)11(1)
11)11(1) | 000 | 000 | 2-779E 02
1-585E 02 | 86.21
131.8E
13.4E
EEEE | 103E | 00.01
00.44
00.00 | 900 | | | 000
000 | 0000 | 713E 0
565E 0
311E 0 | 547
167
451 | 43CE
863E
941E | 44.14
0 44.14
0 0 0 0 | 471E
627E
000E | | 144
044
094 | 9001 | 22.00 | 979
900 | 5.4.2
mmm | .857E
.506E | 25.75 | יאקור | | | 000 | 000 | 132E 0
922E 0
695E 0 | 757E
352E
000E
0 | 240
241
241
341
341
341 | 200
200
200
200
200 | 1000
1000
1000
1000 | | 444
464 | 000 | 000 | 0025
4400
4400
600 | 723E- | -454
-5136
-5186 | 247
247
700 | 6 5 H | | 146 | 00.2 | 3.00 | I 2.55 EE C2 | .133E | 35E | .164E 0 | 1.1616 01 | PCATH = PLY FERICE = 1200 TO 1300 HOURS CN A WEEKDAY | - | ! | ! | | | | | 040 | | | | <u> </u> | | | l | | |----------|------|----------------|---------------------------------------|--|------------------|----------|--------------------------|-----------------|-------------------------|-------------------------|---------------------|--------------|-------------|--------------|-------------| | | • | | 00 | 990 | 000 | 000 | 000 | 900 | 900 | 900 | 000 | 000 | 000 | 900 | 96 | | | | . 0 | 100 | 114-4 | 1000 | 1500 | 975 | 4100 | 800 | 450 | 84N | - | 242 | וחשוחן | 354 | | ! | | 1 | | 1 | | | 0.00
0.00 | | | | | | | | - | | į | | - | - | | 1 | 1 | 1 | | |

 | | | 1 |
 | - | | | | | | | | | 848 | | | | | | | | 96 | | | | = | (PHP) | ווששו | 24.4
mmm | 18081 | 4-61 | SUCKI | - WILL | SON! | 2 | | NEO | - CCC
mmm | 44 | | | EAN | 2 | 1 | שישוחו | | 1 VAV | AA. | 4-40 | | I WHOU | Owe | I HING | NITIO | 950 | 50 | | | 2. | | 1 | " | | 1 | 1 1 | MNY | 1 -46140 | 1400 | 1 | 900 | OW4 | MINU | 104 | | FCE | ET 1 | a. | 38 | 999 | 955 | 955 | 278 | 0.50 | -00 | 600 | | | | 355 | 90 | | 3 | 1 | <u>ر</u>
من | | | Luuu | - | سلسا | www | - | - | www | | - | l www | we | | | 7 | Z Z | 200 | 979 | 920 | 1 W W P | 9800
14800
1416161 | 100° | 1 NOB | 485 | 1970 | 400 | 630 | 1947 | - | | S | 4 | GRA | | พพ | | | -00 | | | | | | | | | | N V | CTE | <u>ب</u> |

 == == | | | | | | | | | - | -1414 | | | | <u> </u> | | I | 00 | 000 | | | 900 | | | - 0 | 000 | 000 | | 000 | 90 | | 10 | 3 | -5 | 00 | 282 | 200 | 200 | 22.00 | W84 | 40- | 280 | OF V | 250 | 570 | 200 | 20 | | 4 | | | 2.1 | 400 | 200 | 8-8 | 10-04 | 200 | 200 | 224 | 4-0 | 2000 | 200 | 3-5 | 201 | | 1 | | , | | | | | - | | 11-11-1 ₁₋₁₂ | 4-4-41-41 | 10-11-11-11 | | | | |
| Z | | | 22 | 500 | 500 | 222 | 200 | 222 | 200 | 555 | 222 | 222 | | 200 | 90 | | Ξ | | 00 | W10 | 000 | 226 | MOM! | 200 | 263 | 14mm | NIOM | BING | 880 | MAR | 9-5 | 1 | | TRA | | | | | 9801 | | | | : 18 | 740 | ONM | WV® | 969 | 950 | 20 | | E | | | 7 | ~00 | מאום | | ארויש | | | -00 | וחוחהו | | 204 | 500 | 6~ | | 2 | | | | | | | | | | | | | | | | | ez | IGN | | 00 | 000 | 000 | 000 | 808 | 000 | 000 | 000 | 900 | 800 | 888 | 900 | 88 | | FIC | 110 | 51 | 4.87 | | | 19014 | | 10014 | 4141 | mv.5 | -000 | +10 | -000 | **** | ~~ | | ECE | וננ | 166 | | | | | | | | | | | | |)

 | | 1 1 | 5 | 5 | | | 41-41 | | | | | 1-4-1-11
 | | | | | | | | EPT | KIL | | | | | 900 | | | | | | | | | | | 2 | =, | | ~~~ | | | V.00 | 000 | 000 | 000 | 000 | 00- | | | == | | | - | | | | | | | | | | | | | - | | | | | - | (((((((((((((((((((|
 | 1 | | 1
1 | • • | | 1
1
1 | 1
1 | | | 1 | | | | 200 | | | | | | | 1 | | 1 | | | | | | | | | | 4741 | | MINTER! | ו נשועוש | 994 | 444 | 4441 | 2001 | | | | | - | | | H. | 40-10-41-41-41-41-41-41-41-41-41-41-41-41-41- | 1-11-11-11 | | , | • | | | ,,,,,, , | | | 47-77-01 | | PENTH = PAY PERICE = 1200 TC 1300 HOURS ON A WEEKDAY | - | | | | | | | 1 | | | - | | | | 1 | | |----------|----------|----------|----------|---------------------------------------|-------------|-------------|-------------|-------------|--|-------------|-------------|----------------|-------------|----------|---| | | | | 8 | | 600 | 900 | 855 | 588 | 44.0
4.0
4.0
4.0
4.0
6.0
6.0
6.0
6.0
6.0
6.0
6.0
6.0
6.0
6 | 555 | 500 | | | 1 | • | | ! | | 2 | BEE | S S S S S S S S S S S S S S S S S S S | 200 | £16- | - | 220 | | | - www | 1 400
1 mmm | 1 | | 224 | | | | V | 0 | 040 | I CHOW | ALC: A | | 04- | חשות ו | 1400 | 200 | 200 | 400 | DIGOIO I | 700 | | 1 | | • | i • i | | | 9014 | | | 700 | - | | 17.100 | | | 1,000 | | | | _ | 4 |
 | <u> </u> | 1 | 1 | | 1 41-0 | 1 | 1 | 1 | 1 | i minimi | 1 | | • | | | | | | ! | ! | ! | | 000 | שושוש | ! | | ! | | | | | | ö | 900 | 000 | 505 | 400 | 900 | 900 | 500 | 200 | 000 | 200 | 000 | 555 | | | | - | 35 | THE THE | WHU. | | MMM
MMM | mmm. | E E | THUM. | | WWW. | | mmm. | STATE OF THE PERSON | | 1 1 | 4 | ٠ - | 12 | | DIM I | 004 | 1504 | DIVIN | SON | 1 | UPN | 4-5 | MON | 1-40 | 174 | | 1 1 | - | 2 | 4 | 901 | 400 | 440 | SOM | | 1000 | יחחש | D4/4 | | U W-U | 1 6145- | 404 | | | 2 | 1 | m | WUM | | | | WWW. | 484 | - | -NE | 2004 | 444 | 444 | 414 | | E | ET 1C | - | ! _ ! | | | | | | | | | , ———
! | | ! | !
! | | 3 | 5 | | 5 | 555 | 355 | 900 | 200 | 2008 | 200 | 606 | 377 | 500 | 500 | 808 | 3 | | 12 | 111 | Un | | WWW | <u>www</u> | www. | www | - | www | www. | | mmm | <u>www</u> | - | WWW | | 10 | | ZN | 8 | | 444 | | 767 | 720 | 200 | 990 | 1 400 | 200 | 445 | 200 | 500 | | | 4 | 1 | - | 45000 | 401 | | | - | 004 | D-4 | 400 | RWA. | WO4 | 440 | 000 | | 2 | | | 'n | | | mo- | -0- | | مندن | | 700 | 400 | ~~~ | 000 | | | 3 | EXPECTED | <u>.</u> | | | | | <u> </u> | | | | ! | ! | | !! | | | 4 | 5 | 71. | 5 | | 966 | 000 | 000 | 000 | 666 | 000 | 000 | 000 | 000 | 000 | 000 | | izi | × | ڪي | w | WUW | 400 | WWW | www | www | யயய | www | www | www | www | mm# | WWW | | 12 | ш . | - | 67 | 24 | | 20E | 4004 | SOUT | 444 | 124 | 444 | 24.28 | 108 | 200 | 255 | | 14 | | | 4 | mmo | 777 | WILL SE | - | 000 | P-010 | - | NINN | MODE ! | 000 | 0-0 | | | 1 | | | - | | เพลง | ∞ ⊸€ | 404 | 20- | -NA | 400 | Ø≓M | 440 | Nimm | | NW4 | | 3 | | - | | 4 | | 000 | | 2 | | NOW. | ~~~ | | | | ~~~ | | 2 | | | 0 | 000 | 000 | 900 | 000 | 000 | 000 | OC/3 | 000 | 000 | 000 | 900 | 000 | | | | S | 96 | THU I | mmm i | mmm i | WWW. | 926 | mmm | | MMM | mmm. | 200 | 200 | - | | 1 | | | 1 ~ i | -mo | 5 | 200 | 000 | | 50- | OWN | NON | M-FIN | SING | 000 | 845 | | 12 | | | 8 | NO- | | ~00 | 200 | W41 | P. W. | 404 | 41-8 | 47-1 | E | | | | 1 | | | ٧ | אטעע | מושפון | 40- | 800 | | ~ | 220 | mæ- | | 82.2 | | | | 3 | | | | | | |] | | |)
 | | | | | | | 10 | 7 | | | 999 | 000 | 00 | 000 | 000 | 000 | 000 | 0 0 | 000 | 000 | 000 | 000 | | E | ē | | 8 | 900 | 888 | 000 | 000 | 000 | 000 | 900 | 000 | 000
000 | 000 | 1000 | 000 | | F | AT 10 | | Š | 0-1 | UI-A.A! | S-10 | MARRI | ~~w | WO- | שוחשו | 110m | IAWA | שושוש | - | -00 | | ECEFTOR | 3 | EFS | | | ~~~ | | | | | | _ | | | | | | 3 | רנני | J | | | | - | | | | ****** | | | | | | | | FTCF | ני | | 9 | | | | | | | | | | | | | | <u>.</u> | - | 0 | 000 | 000 | 900 | 000 | 000 | 000 | 000 | 000 | 000 | 000 | 900 | 000 | | | 3 | ×, | 2 | 000 | 000 | 900 | 000 | 000 | | | | | | | 000 | | | ¥ | | = | | - | - | ראישו | 171717 | | INN | MINI I | | (alteria) | ****** | ******** | | | _ ; | | | | | | | | | | | | | | | | 1 | - | 40-40-44 | ! | | | | | | | | | | | | *********** | | | | | | | | | | | | | | i | | | | | | | | ų | | - | - | - | vo- | New | 4141 | wre | - | - | | 0-10 | | | wa. | | <u>-</u> | - | 500 | 500 | 555 | 2002 | 000 | 000 | 200 | 222 | 222 | 25 | 2442 | | | F | | | | | | | | | | | | | | | | | | | <u> </u> | , ,,,,,,, , | | ***** | 1 | | *** | | | | | | | | | - | | | | | | | | | | | | | | | PCNTH = PAY FERICE = 1200 TC 1300 HOURS ON A WEEKCAY | i | | | | | | | | | | | | | | | - | |----------------------------|---|--------------|---------------------------------------|--|--|--|------------------------------|------------------------------|---|--------------------------------------|--|--------------------------------------|--|---|-----------| |
 | 1
1
1
1
1
1
1
1
1 | \$05 | 000
404
mmn | 717E-0 | 68376 | 456E
656E
656E
656E | 10346 | 1516
8786 | 2596-0 | 200 E | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | 464E 00 | 26616
25616
2506 | 6.40
6.40
7.40
7.40
7.40
7.40
7.40
7.40
7.40
7 | 6.158E-04 | | ;
;
;
;
;
; | 2 | TEP) FT | | - 61 6 E - 0
- 41 6 E - 0
- 12 5 E - 0 | - 0 - 4 - 6 - 6 - 6 - 6 - 6 - 6 - 6 - 6 - 6 | BUA
BUA | | 200 | 5000
5000
5000
5000
5000
5000
5000
500 | 1000
1000
1000
1000
1000 | 652
652
652
652
652
652
652
652
652
652 | 2000
2000
2000
2000
2000 | 2000
2000
2000
2000
2000 | 417E-0 | 5.CC2E-04 | | VIRON SCUFCES | C ARITHMETIC | GRAMS/CL. PE | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | 9428 | 58:67
67:66
67:66 | 948
906
906
66
66 | 2000
2000
2000
2000 | 475E | 26 JE-0
20 SE-0 | 1000 | 4004
9004
9004 | 0225
0816
0816 | 201E
434E
575E
C | 455E
730E-0 | 1.7076-03 | | TA FROM ENVI | EXPECTE | 7 TO 1 | 040
453 | 2 3 3 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 2423
2423
2443
2443
2443
2443
2443
2443 | 2000 | 200
200
200
200 | 138
452
666 | OWW | 2555
400
606 | N40 | 2000
0000 |
200
200
200
200
200 | 9462
0000
0000 | 1 40 | | CENTRATICE DA | | 93 | 594
326
167 | 303E-0
762E-0
691E-0 | 029E
758E
935E | 75E
79E
15E
000 | .234E
.396E
.137E | 344EF
916EF | 2004
2004 | 3338E | 999 | .512E 0
.486E 0 | -651E
-059E
059E
059E | 1-900E 02
7-866E-04
2-284E-03 | 2.367E-02 | | ECEFTOR CONC | LCCATION | TEFS) | 47.0
000 | 000 | 48.4
000 | 000 | 112-00 | 000 | 000 | ()-4-fl)
000 | 0000 | 10000 | 2214
000 | 11
00
00
00
00
00 | 2.00 | | | RECEPTER | KILCPE | 000 | 000 | 000 | 000 | | | 000 | 000 | 000 | 000 | 900 | 900
900 | 16.00 | | - | FECEFTCP I | | 1700
1700
1700
1700
1700 | 2000
2000 | 1707
17010
17020 | 2000
1000
1000
1000
1000
1000
1000
1000 | 222 | 2523
2528
2528
2528 | 17171
444
17171 | 444 | 444
444 | 040
040 | ()()()
()()()()()()()()()()()()()()()() | 2000
2000
2000 | 1 255 | MCNTH = PAY PERICE = 1200 TO 1300 HOURS ON A WEEKDAY | . — | | | | | | | · | | | | - | | | | | |---|--------------------|-------------|--|--|--------------------------------------|---|----------------------------------|--|--|---|--|-------------------------------------|--|--|------------------------| | ;
;
;
;
;
;
; | | 203 | 00
00
00
00
00
00
00
00
00
00
00
00
00 | 2004
0004
0004 | | 6.50
6.50
6.50
6.50
6.50
6.50
6.50
6.50 | 7.551E
4.81E
1.224E
000 | | 1.016
1.2206
7.4806
000 | 7.661E-01
1.2223E-01
1.001E-01 | 1 - 2 - 4 - 6 - 6 - 6 - 6 - 6 - 6 - 6 - 6 - 6 | | 5000
5000
61000 | | 6-646E-01 | | *************************************** | FEF | ETER)
FT | 887
87
87
87
87
87
87 | 2.2646
9.5206-01
5.5766-01 | 000
000
000
000 | 1 4 4 10
1 12 11 12
1 11 11 11 11 11 11 11 11 11 11 11 11 1 | 1657E
057E
057E | 3000 | 0 - 50 7 E - C 1 - | 000
000
000
000
000
000
000 | 144
144
144
144
144
144
144
144
144
144 | 2000
0000 | 1000
1000
1000
1000
1000
1000 | 400
400
400
1400
111 | 6-416E-01 | | RON SCUFCES | ED ARITHMETIC | GRAMS/CL. P | 57CE-C | 3-703E C1 | 2000
2000
2000
2000 | 1725 | 282E
040E
0640E | 20 EEE C | 300
1300
1300
1300
1300
1300
1300
1300 | 000
1000
1000 | MMM
000 | 200
040
204
204
204 | | 200
000
000
000
000 | 2.5166 60 | | ITA FROM ENV | EXPECT | HULL | 545E-0 | 2000
000 | 24.0
17.0
11.0
11.0
00.0 | 1.80.
1.80.
1.00. | 2556
4766
9766
9766 | 2000
2000
2000
2000
2000 | .025E
.169E
.967E | 47.4
mmm | 200
200
200
200
200 | 000
000
000
000 | MMM
1111 | 300
300
300
300
300
300 | 6-074E 00 | | ENTRATION C | | טט | 2 1E -0 | 205
205
205
205
200
200 | 040
1464
1764
1764
1766 | 75E
72E
20E | 6273
8318
8660
9660 | 5-78
5-78
5-78
5-78
5-78
5-78
5-78
5-78 | 913E
997E
954E | | 34.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00 | 9-277E 01
1-378E 02
1-005E 02 | -0956-0 | : 533E 91 | 3.578E 01
1.884E 01 | | PECEFTOR CON | LCCATION | ETEFSI | 6.0
00
00 | 000 | 10.00
10.00 | 000 | 410 | 000 | | 000 | 000-00 | 000 | 000 | 000 | 90 | | | PECEPTCR | KILCP | 00 | 000 | 000 | 900 | 000 | 000 | 17.00 | 000 | 900 | 000 | 000 | | 60 | | | FECEFICA
NUMBER | | 260 | 222 | 2001A | 2256 | 19719 | 4819 | 22.2
2.2
2.5
2.5
2.5 | 0.17 | 2000
2000
2042 | 2777
9000 | 200
200
200
200
200
200
200
200
200
200 | 2000
2000
2004 | 25.5 | PENTH = PAY FERICE = 1200 TC 1300 HOURS ON A WEEKDAY | | | | | | | | | | | | | | | 4 -1-1-1 | | |---|---|--------------|-----------|--|--|------------------|---------------------------------|--|--|--|--
---|--------------------------|---|--| | 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0 | 205 | 4.4016-01 | 200
200
200
200
200
200 | 2020 | 261E 0 | | 6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 178E-0
757E-0
653E-0 | 1.1000
1.9376
0001 | 100
100
100
100 | 4.4.2
4.4.2
4.4.2
4.4.2
4.4.2
4.4.2
4.4.2
4.4.2
4.4.2
4.4.2
4.4.2
4.4.2
4.4.2
4.4.2
4.4.2
4.4.2
4.4.2
4.4.2
4.4.2
4.4.2
4.4.2
4.4.2
4.4.2
4.4.2
4.4.2
4.4.2
4.4.2
4.4.2
4.4.2
4.4.2
4.4.2
4.4.2
4.4.2
4.4.2
4.4.2
4.4.2
4.4.2
4.4.2
4.4.2
4.4.2
4.4.2
4.4.2
4.4.2
4.4.2
4.4.2
4.4.2
4.4.2
4.4.2
4.4.2
4.4.2
4.4.2
4.4.2
4.4.2
4.4.2
4.4.2
4.4.2
4.4.2
4.4.2
4.4.2
4.4.2
4.4.2
4.4.2
4.4.2
4.4.2
4.4.2
4.4.2
4.4.2
4.4.2
4.4.2
4.4.2
4.4.2
4.4.2
4.4.2
4.4.2
4.4.2
4.4.2
4.4.2
4.4.2
4.4.2
4.4.2
4.4.2
4.4.2
4.4.2
4.4.2
4.4.2
4.4.2
4.4.2
4.4.2
4.4.2
4.4.2
4.4.2
4.4.2
4.4.2
4.4.2
4.4.2
4.4.2
4.4.2
4.4.2
4.4.2
4.4.2
4.4.2
4.4.2
4.4.2
4.4.2
4.4.2
4.4.2
4.4.2
4.4.2
4.4.2
4.4.2
4.4.2
4.4.2
4.4.2
4.4.2
4.4.2
4.4.2
4.4.2
4.4.2
4.4.2
4.4.2
4.4.2
4.4.2
4.4.2
4.4.2
4.4.2
4.4.2
4.4.2
4.4.2
4.4.2
4.4.2
4.4.2
4.4.2
4.4.2
4.4.2
4.4.2
4.4.2
4.4.2
4.4.2
4.4.2
4.4.2
4.4.2
4.4.2
4.4.2
4.4.2
4.4.2
4.4.2
4.4.2
4.4.2
4.4.2
4.4.2
4.4.2
4.4.2
4.4.2
4.4.2
4.4.2
4.4.2
4.4.2
4.4.2
4.4.2
4.4.2
4.4.2
4.4.2
4.4.2
4.4.2
4.4.2
4.4.2
4.4.2
4.4.2
4.4.2
4.4.2
4.4.2
4.4.2
4.4.2
4.4.2
4.4.2
4.4.2
4.4.2
4.4.2
4.4.2
4.4.2
4.4.2
4.4.2
4.2 | 244
244
200
200 | 043
043
043
043
043
043
043 | 2000
2000
2000
2000
2000 | | | FEAN | TER) FT | 4.336E-01 | 2446-0 | | 0-3098
060E-0 | | 4-7376-01
2-5356-01
2-536-01 | | 1-0546
-0546
-0546
-001 | 200
200
200
200
200
200 | | 200
111 |
2.564
2.564
2.564
2.564
2.564
2.564
2.564
2.564
2.564
2.564
2.564
2.564
2.564
2.564
2.564
2.564
2.564
2.564
2.564
2.564
2.564
2.564
2.564
2.564
2.564
2.564
2.564
2.564
2.564
2.564
2.564
2.564
2.564
2.564
2.564
2.564
2.564
2.564
2.564
2.564
2.564
2.564
2.564
2.564
2.564
2.564
2.564
2.564
2.564
2.564
2.564
2.564
2.564
2.564
2.564
2.564
2.564
2.564
2.564
2.564
2.564
2.564
2.564
2.564
2.564
2.564
2.564
2.564
2.564
2.564
2.564
2.564
2.564
2.564
2.564
2.564
2.564
2.564
2.564
2.564
2.564
2.564
2.564
2.564
2.564
2.564
2.564
2.564
2.564
2.564
2.564
2.564
2.564
2.564
2.564
2.564
2.564
2.564
2.564
2.564
2.564
2.564
2.564
2.564
2.564
2.564
2.564
2.564
2.564
2.564
2.564
2.564
2.564
2.564
2.564
2.564
2.564
2.564
2.564
2.564
2.564
2.564
2.564
2.564
2.564
2.564
2.564
2.564
2.564
2.564
2.564
2.564
2.564
2.564
2.564
2.564
2.564
2.564
2.564
2.564
2.564
2.564
2.564
2.564
2.564
2.564
2.564
2.564
2.564
2.564
2.564
2.564
2.564
2.564
2.564
2.564
2.564
2.564
2.564
2.564
2.564
2.564
2.564
2.564
2.564
2.564
2.564
2.564
2.564
2.564
2.564
2.564
2.564
2.564
2.564
2.564
2.564
2.564
2.564
2.564
2.564
2.564
2.564
2.564
2.564
2.564
2.564
2.564
2.564
2.564
2.564
2.564
2.564
2.564
2.564
2.564
2.564
2.564
2.564
2.564
2.564
2.564
2.564
2.564
2.564
2.564
2.564
2.564
2.564
2.564
2.564
2.564
2.564
2.564
2.564
2.564
2.564
2.564
2.564
2.564
2.564
2.564
2.564
2.564
2.564
2.564
2.564
2.564
2.564
2.564
2.564
2.564
2.564
2.564
2.564
2.564
2.564
2.564
2.564
2.564
2.564
2.564
2.564
2.564
2.564
2.564
2.564
2.564
2.564
2.564
2.564
2.564
2.564
2.564
2.564
2.564
2.564
2.564
2.564
2.564
2.564
2.564
2.564
2.564
2.564
2.564
2.564
2.564
2.564
2.564
2.564
2.564
2.564
2.564
2.564
2.564
2.564
2.564
2.564
2.564
2.564
2.564
2.564
2.564
2.564
2.564
2.564
2.564
2.564
2.564
2.564
2.564
2.564
2.564
2.564
2.564
2.564
2.564
2.564
2.564
2.564
2.564
2.564
2.564
2.564
2.564
2.564
2.564
2.564
2.564
2.564
2.564
2.564
2.564
2.564
2.564
2.564
2.564
2.564
2.564
2.564
2.564
2.564
2.564
2.564
2.564
2.564
2.564
2.564
2.564
2.564
2.564
2.564
2.564
2.564
2.564
2.564
2.564
2.564
2.564
2.564 | 6.045
6.045
6.045
6.00
6.045
6.00
6.00 | | PON SCLECES | C ARITHETIC | GRAMS/CL. PE | 1.377E CO | 2.0682E
2.8845E
2.8846E
0.00000000000000000000000000000000000 | 84-28
4-48
6-484
6-66
6-66
6-66
6-66
6-66
6- | 733E-0 | | 1 - 80 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - | 1-112E CO
1-125E CO | 4216
3336 | 6.213E CO
5.234E CO
0.00 | 3-761E-04
1-976E-C3
6-440E-03 | 9000 | 000
000
000
000
000
000
000
000
000
00 | 111
989
9004
7266
000 | | TA FROM ENVI | EXPECTE | FCHICAL | 3.565E 00 | 524E
524E
000 | | 941E 0 | 400
400
400
400
400 | | -0-2-6-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0 | 44.0
44.0
34.0
35.0
35.0
35.0
35.0
35.0
35.0
35.0
35 | 1.573E 01
0.0 | | 000
mmm | . 963
675
672
672
672 | 24-21-25-25-25-25-25-25-25-25-25-25-25-25-25- | | ENTRATICH CA | |)
) | 1.837E 01 | 2-180E 01
2-575E 01 | | E 0 | -311E-0 | 59.3E
40.7E
0.0E
0.0E
0.0E
0.0E
0.0E
0.0E
0.0E | .535
2535
2586
2586
000 | -689
-083E
-164E
0 | 8-334E 01
6-820E 01 | 5-273E-03
2-773E-02
9-027E-02 | 8-037E 00
5-546E 01 | 2.511E 01
1.500E 01 | 2-244E 01
2-621E 01 | | ECEFTOR CONC | LCCATION | TERS! | 6.00 | 0000 | 000
000
000 | 000 | 000
000 | 000
000 | 80.0
000
000 | 0000 | 441
000
000 | 36.00 | 4#1#
000 | 000 | 000 | | | FECEFTCF | KILGFE | 16.00 | 000 | 000 | 15.000 | 000 | 2000 | 000 | | 000 | 000 | 000 | 000
000
000 | 000
000
000
000 | | | PECEFTCP
NUMBER | | 1 257 | 255
200
200
200 | 000
(1)(1)(1) | 000
4814 | 210)E | | | | | 016101
0100
01004 | 222 | 11010)
12011
12011 | 610101
610101
610101 | PENTH = PLY PERICE = 1200 TO 1300 HOURS CN & WEEKDAY | _ | ! | ! | - |
 | 14140 |
 | | | | | |

 | ! | | | |---------------------------------------|---------------|--------------|---|---------------------------------|--|---|---|--|--|---|--|--|---|--|-------------| | | | 205 I | 24-6-6-6-6-6-6-6-6-6-6-6-6-6-6-6-6-6-6-6 | 7 70E- | 344
476
000 | 000
000
000
000
000
000
000
000
000
00 | 000
000
000
000
000
000 | 2526
2526
2526
2526
2526
2526
2526
2526 | 0-0
0-0
0-0
0-0
0-0
0-0
0-0
0-0
0-0
0-0 | 200 | 448
600
084
000 | 2476-0 | 044
464
040
mmm | | 0.0 | | • • • • • • • • • • • • • • • • • • • | F 65 | TER) FT | 3757
3757
3757
4750
600
600
7750
600 | 423E-1 | 1 - 707 E - 02
1 - 210 E - 02
1 - 210 E - 02 | 4566
0426
5026
0 | 200
200
200
200
200
200 | 6.151E-01 | 2000
2000
2000
2000
2000 |
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00 | 4.0166
3.23966
3.34666
0.34666
0.34666
0.34666
0.34666 | 6026- | 444
0014
1410
1410
1111
1111 | | 0.0 | | IRON SCUFCES | EC ARITEMETIC | GRAMS/CL. PE | #4#
#000
#000
#000
#000 | 151E-C | 1000 | 848 | 470
470
574
575 | 700 | 22.26
20.26
6.566-0 | 5000
5000
5000
5000
5000
5000
5000
500 | 244
244
246
246 | www | 2015 | 37E | 0.0 | | NTA FROM ENV | EXPECT | #21#10# | 8.101E
8.755E
000 | 755E-
265E- | 325E | 6196
856
956
000 | 9 4 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 | 956E
776E
863E | 951E
456E-0 | 972E-9 | 5524
3000
3000 | 007
007
009
009
009
009
009 | 2000
3000
3000 | 00
00
25
25
00
00
00
00
00
00
00
00
00
00
00
00
00 | 0.0 | | ENTRATION C | | טט | 4.239E 01
4.319E 01 | . 613E-0
.184E-0 | 9-155E-01
1-990E-00
7-805E-01 | 425
053
141 | 1050
1566 | 706
473
001 | -3.089E-11 | 8000
2000
2000
2000
2000
2000 | 2-605E 01
2-092E 01
2-020E 01 | 9.5.00
9.5.00
9.5.00
9.5.00
9.5.00 | 2-030E 01
1-904E 01 | 1-859E 01 | 0.0 | | ECEFTOR CEN | LCCATION | TEFS | 944
000
000 | 0°0
2°0
2°0
0°0
0°0 | 414.87
0000 | 00°-6 | 10-00 | 12.00
13.00
14.00 | 15.00 | 22.7 | 000 | 6.00
0.00
0.00 | 000 | 440
000 | 1.00 | | | FECEPTCF | KILCP | 000 | 000 | | 000 | 000 | 000 | | ממטו | ואטוא | 900
900
1989 | NOW | 1444
1444
1990 | 22.00 | | - | FECEFICE I | | നലന വ | והטטוח | 444 | 777 | 222 | WWu) 44101 | 414141 | RIMINI | ו היאשו | ###################################### | 9 | 404 | 370 | PCRTH = PAY FERICE = 1200 TC 1300 HOURS ON A WEEKDAY | - | | PECEFTOR CONC | CCNCENTRATICN CA | CATA FROM ENV | ENVIRON SCUFCE | S | | |---|-------------------------|----------------------|---------------------------------------|-------------------------------------|--------------------------------------|---|---| |
FECEFICA | PECEFTCF | LCCATION | | EXPECTED | EC ARITHETIC | 7 E | 0
0
1
0
1
0
0
0
0
0 | | | KILCH | ETERS) | 03 | I FCMICR | GRAMS/CU. P | ETER)
FT | 203 | | 37 | 22.00 | 3.00 | 7.243E-03 | -2.404E-0E | -1.00EE-CE | -2.215E-05 | 1.352E-05 | | נוטוע
נולבו
נולבו | 4.14.14.1 | 6.50
000
000 | 80° | 2.786E-02
4.301E-01
6.125E-01 | 5-5 | 4-270E-04
3-64E-02
5-537E-02 | 4-276E-04
4-210E-05
6-160E-02 | | 2100c)
210cc
210cc | 23.00
23.00
25.00 | 7.00
6.00
6.00 | \$27E 0 | | 3-905E-01 | | 5 - 6 - 6 - 6 - 6 - 6 - 6 - 6 - 6 - 6 - | | 6000
7000
7000 | | 1110000 | 1 -250E 01
1 -480E 01
311E 01 | | 8-840E-61
1-052E-60
9-443E-01 | 2 - 62 FE - 01
2 - 85 7E - 01 | 2.737E-01
2.565E-01 | | 1111111
111111111111111111111111111111 | | 113.000 | 1.451E 01
1.624E 01 | | 9-887E-C1
1-085E-C1
1-23CE C0 | 23-13-0
-3-13-0
-3-13-0
-3-13-0
-3-13-0
-3-13-0
-3-13-0
-3-13-0
-3-13-0
-3-13-0
-3-13-0
-3-13-0
-3-13-0
-3-13-0
-3-13-0
-3-13-0
-3-13-0
-3-13-0
-3-13-0
-3-13-0
-3-13-0
-3-13-0
-3-13-0
-3-13-0
-3-13-0
-3-13-0
-3-13-0
-3-13-0
-3-13-0
-3-13-0
-3-13-0
-3-13-0
-3-13-0
-3-13-0
-3-13-0
-3-13-0
-3-13-0
-3-13-0
-3-13-0
-3-13-0
-3-13-0
-3-13-0
-3-13-0
-3-13-0
-3-13-0
-3-13-0
-3-13-0
-3-13-0
-3-13-0
-3-13-0
-3-13-0
-3-13-0
-3-13-0
-3-13-0
-3-13-0
-3-13-0
-3-13-0
-3-13-0
-3-13-0
-3-13-0
-3-13-0
-3-13-0
-3-13-0
-3-13-0
-3-13-0
-3-13-0
-3-13-0
-3-13-0
-3-13-0
-3-13-0
-3-13-0
-3-13-0
-3-13-0
-3-13-0
-3-13-0
-3-13-0
-3-13-0
-3-13-0
-3-13-0
-3-13-0
-3-13-0
-3-13-0
-3-13-0
-3-13-0
-3-13-0
-3-13-0
-3-13-0
-3-13-0
-3-13-0
-3-13-0
-3-13-0
-3-13-0
-3-13-0
-3-13-0
-3-13-0
-3-13-0
-3-13-0
-3-13-0
-3-13-0
-3-13-0
-3-13-0
-3-13-0
-3-13-0
-3-13-0
-3-13-0
-3-13-0
-3-13-0
-3-13-0
-3-13-0
-3-13-0
-3-13-0
-3-13-0
-3-13-0
-3-13-0
-3-13-0
-3-13-0
-3-13-0
-3-13-0
-3-13-0
-3-13-0
-3-13-0
-3-13-0
-3-13-0
-3-13-0
-3-13-0
-3-13-0
-3-13-0
-3-13-0
-3-13-0
-3-13-0
-3-13-0
-3-13-0
-3-13-0
-3-13-0
-3-13-0
-3-13-0
-3-13-0
-3-13-0
-3-13-0
-3-13-0
-3-13-0
-3-13-0
-3-13-0
-3-13-0
-3-13-0
-3-13-0
-3-13-0
-3-13-0
-3-13-0
-3-13-0
-3-13-0
-3-13-0
-3-13-0
-3-13-0
-3-13-0
-3-13-0
-3-13-0
-3-13-0
-3-13-0
-3-13-0
-3-13-0
-3-13-0
-3-13-0
-3-13-0
-3-13-0
-3-13-0
-3-13-0
-3-13-0
-3-13-0
-3-13-0
-3-13-0
-3-13-0
-3-13-0
-3-13-0
-3-13-0
-3-13-0
-3-13-0
-3-13-0
-3-13-0
-3-13-0
-3-13-0
-3-13-0
-3-13-0
-3-13-0
-3-13-0
-3-13-0
-3-13-0
-3-13-0
-3-13-0
-3-13-0
-3-13-0
-3-13-0
-3-13-0
-3-13-0
-3-13-0
-3-13-0
-3-13-0
-3-13-0
-3-13-0
-3-13-0
-3-13-0
-3-13-0
-3-13-0
-3-13-0
-3-13-0
-3-13-0
-3-13-0
-3-13-0
-3-13-0
-3-13-0
-3-13-0
-3-13-0
-3-13-0
-3-13-0
-3-13-0
-3-13-0
-3-13-0
-3-13-0
-3-13-0
-3-13-0
-3-13-0
-3-13-0
-3-13-0
-3-13-0
-3-13-0
-3-13-0
-3-13-0
-3-13-0
-3-13-0
-3-13-0
-3-13-0
-3-13-0
-3-13-0
-3-13-0
-3-13-0
-3-13-0
-3-13-0
-3-13-0
-3-13-0
-3-13-0
-3-13-0
-3-13-0
-3-13-0
-3-13-0
-3-13-0
-3-13-0
-3-13-0
-3-13-0
-3-13-0
-3-13-0
-3-13-0
-3-13-0
-3-13-0
-3-13-0
-3-13-0
-3-13- | 2.255E-01
2.875E-01
4.750E-01 | | #140
#80
#80
#140
#140
#140
#140
#140
#140
#140
#14 | | 2.00 | | 0.0
-6.444E-11
1.048E-05 | -2-702E-11 | -7-276E-12 | -7-276E-12
-7-276E-12 | | 616161
41807
4007 | 24.00
24.00
24.00 | 6.4.2
000
000 | .212
.212
.229 | | 1.88EE-C5
8.552E-C4
4.412E-C3 | | 2.088E-04
1.088E-04 | | 1000
1000
1000 | 444
000 | 2000 | 1.4.284E-01
1.470E 00
2.941E 00 | 2.516-02
5.0316-01 | 3.036E-C2
11.035E-C1
2.079E-C1 | 6 - 10 2 E - 0 3 5 - 4 10 E - 0 2 5 - 4 10 E - 0 2 5 5 E - 0 2 5 E | 7 - 4 2 3 E - 0 2 E - 6 2 E - | | 4814 | 200
200
200 | 2000
0000
0000 | 4-794E 00
6-858E 00
8-956E 00 | 8-207E-01
1-178E 00
1-545E 00 | 4.9366-61 | 10.
10.
10.
10.
10.
10.
10.
10.
10.
10. | 9-4-8-6-01
1-4-2-6-01
1-5-3-7-6-01 | | C10101 | 000 | 2274 | | | 6-436E-01
7-290E-01
8-297E-01 | 2.12.E-01
2.614E-01 | 1.0896-01
2.2366-01
2.7366-01 | | 1 400 | 24.00 | 15.00 | 1 1.273E 01 | 1 2.415E 00 | 1 9.485E-01 | 1 3-234E-01 | 3.2536-01 | PENTH = PAY FERICE - 1200 TO 1300 HOURS ON A WEEKDAY | | | 205 | 000 | 000 | 9 00 | 000 | 900 | 000 | 000 | 900 | 900
900 | 000 | 900 | 900 | 0.0 | |--------------
--|-------------|------------|------------|-------------|------|------------|--------------------|------------|-------------------|------------|------|-------------|--------------|------| | S | CFEAN | ETER! FT | 990 | 000 | 000 | 000 | 000
000 | 000 | 000
000 | 900 | 000 | 990 | 000 | 000 | 0.0 | | CAT SCUFCE | C ARITEPET | GRAMS/CL. P | 000 | 000 | 000 | 000 | 000 | 000 | 000 | 900 | 000 | 000 | 000 | 000 | 0.0 | | TA FROM AIRE | EXPECTED | HC HICH | 000 | 900 | 000 | 000 | 000 | 000 | 000 | 900 | 000 | 000 | 000 | 900 | 0.0 | | ENTRATICH CA | | 00 | 000 | 000 | 000 | 000 | 000 | 000 | 000 | 000 | 000 | 000 | 000 | 000 | 0.0 | | CEFTCR CONC | LCCATION | IEFS) | 900 | 600
000 | 900 | | 0000 | 8/0
0
0
0 | 000
000 | 000
000
000 | 10000 | 000 | 4//0
000 | 000 | 00.4 | | C . | RECEFTCF | XXICE | 000
000 | 000 | 000 | 000 | 000 | 000 | 990 | 000 | 000 | 000 | 000 | 000 | 2.00 | | | NECE THE PERSON NAMED IN PERSO | | -cun | 46.40 | ~ w | 0-12 | 01445
 | | 501 | | 256 | 2776 | | West
Arim | 37 | FROM DIRPORT SCLECES EXPECTED ARITHMETIC PEAN | DOC 00 000 000 000 000 000 000 000 000 000 000 000 000 L CHICKE 00 000 000 000 000 000 000 000 000 000 000 000 CCNCENTRATICA 1300 HOURS 80 | 800 | 8 80 | 80 FECE FICE HUNDH 67 PENTH - PEY FERICE - 1200 TO 1300 HOURS ON A MEEKCAY | : ———————————————————————————————————— | 1
1
1
1
1
1
1
1
1
1
1 | 1 562 | 10 | 000 | 000 | 000 | 900 | 000 | 900 | 000 | 300 | 999 | 900 | 000 | 000 | |--|---|-------------|-------|-------------------|-------------------|-------------------|--------------------|------------|-------------------|-------------------|--------|------------|--------------|-------------------|------| | | FER | ETER) FT | 0.0 | 000 | 000 | 900 | 900 | 900 | 900 | 900 | 900 | 000 | 000 | 000 | 800 | | CRT SCUFCE | EXPECTED ARITHMETIC | GRAMS/CL. P | 0.0 | 000 | 000 | 000 | 000 | 000 | 000 | 000 | 000 | 000 | 000 | 000 | 000 | | TA FROM PIRE | | HCRC HCRC | 0.0 | 000 | 000 | 000 | 000 | 000 | 000 | 000 | 000 | 000 | 000 | 000 | 000 | | ENTRATICA CA | | 1 00 | 0.0 | 000 | 000 | 000 | 000 | 000 | 000 | 000 | 000 | 000 | 000 | 000 | 000 | | ECEPTOR CONCE | LECATION | EFS) | 10.00 | 000 | 400
000
000 | 000 | 441A
000 | 000
000 | 000 | 000 | 000 | 000
000 | 900
900 | 000 | 000 | | • | RECEPTOR L | XXICAE | 4.00 | 444
000
000 | 44m, | 000 | 990
990
990 | 000
000 | 900
900
900 | 900
900
000 | 000 | 000 | 000 | 000 | 000 | | | FECEFICA | | 32 | AL-80 | A00 | 2404
2404
1 | 11-11-1
11-11-1 | 20 00 U | | 4814 | A.M.Q. | 0-11V | 000
014*1 | 900
900
900 | V9-1 | PENTE - PEY FERICE - 1200 TO 1200 HOURS ON A WEEKDAY | | | ECEFICA CONC | ENTRATION CA | TA FACP AIF | CRT SCUFCES | | | |--------------|-----------------------------|--------------------|-------------------------------------|-------------------------------------|-------------------|--|-------------------------------------| | FECEFACE I | RECEPTOR | LCCATION | | EXPECTI | EC ARITHETIC | F | | | | KILCPE | TEFSI | 30 | (MICA) | GRAMS/CL. PE | TER J FT | 208 | | 17014 | 000 | 000 | 500 | 3-422E-10 | | | 000 | | | 000 | 000 | | 000 | | | 000 | | 1116 | | 000 | 000 | 000 | 000 | 000 | 000 | | 1222 | 000 | 10.00
00.00 | 000 | 000 | | | 900 | | 42:0 | 000 | 000 | -9.762E-14
0.0
5.800E-10 | -1.347E-14
0.0
8.004E-11 | 3546-1 | 717E | | | 1785 | 6 - 00
000
000
000 | 7410
000 | 1.940E-08
2.032E-07 | 1.3735-06
2.1095-07 | 781E
319E | | 4-421E-10
4-868E-09 | | 0717 | | 000 | 000 | 000 | 000 | 000 | 000 | | | 000 | 44.4
000
000 | 000 | 000 | | | 000 | | 100 mm | 000 | 0000 | 000 | 000 | | 000 |
000 | | 1044
4404 | 000
000 | 000 | 2-520E-C6
7-717E-07
1-096E-07 | 1.065E-07
3.156E-07 | 1.071E-C6 | 2.154E-08
2.146E-08
2.852E-05 | 1.726E-07
2.784E-08
4.511E-05 | | 1111 | 000 | 000 | 1.019E-06
5.455E-06
2.761E-05 | 8.927E-01
6.312E-06
2.248E-05 | 300
046
046 | 0337
0236
025
025
025
025
025
025
025
025
025
025 | 2.856E-08
1.12E-03
7.017E-07 | | 444
444 | 900 | 000 | | 000 | 000 | 000 | 000 | | 146 | 00.5 | 00-5 | 0.0 | 0.0 | 0.0 | 0.0 | | HCNTH # PAY PERICC * 1200 TC 1300 HOURS ON A WEEKCAY | | | ECEFICH CON | CENTRATION C | ATA FACE AIR | PCRT SCUFCES | | | |--------------------------|---------------------|---------------------------------------|-------------------------------------|--------------|---|--|--| | FECEFICA
NUMBER | PECEPTCA | LCCATION | | EXPECTED | ED ARTIFFETIC | FEAN | # # # # # # # # # # # # # # # # # # # | | | KILOP | TEFS! | 5 | E L CHICH | GRAMS/CL. P | TER) FT | 205 | | 145 | 00
00
00 | 4 " | 00 | 00 | 90 | | 00 | | -1441
-1441
-1441 | 999 | 000 | | 000 | 000 | 000 | 900 | | 4010
014161 | 900 | , , , , , , , , , , , , , , , , , , , | -3-706E-08 | -5-114E-05 | 316-6 | 004 | -1-817E-05 | | | 000 | 0000 | 4000
4000
4000
4000 | 2521E-0 | | 200
100
100
100
100
100 | | | 0-14
0-14
0-14 | | 000 | 6-363E-04 | 7-126E-04 | 1.633E-C4 | | 0.00
0.00
0.00
0.00 | | 1144
1144 | 000 | 200 | 000 | 000 | 000 | | 990 | | 1666 | 000 | 000 | 000 | 000 | 000 | 000 | 900 | | | 000 | 900
000
000 | 519E-0 | 9-377E-05 | -4-718E-67 | 334 | -20-00-00-00-00-00-00-00-00-00-00-00-00- | | Make | 000 | 000 | 1-865E-02
9-082E-03
7-154E-03 | 9-1786-03 | 2 - 5 - C - C - C - C - C - C - C - C - C | | | | 100 | 110000 | 000 | 6-809E-03 | 9.0636-03 | 1.514E-C3 | 623E-6 | 000
000
000
000
000
000 | | 1176 | 000
000
• • • | 000 | 900 | 990 | 000 | | 000 | | | 000 | 444A
000 | 000 | 000 | 000 | 000 | | | 400
400
400
400 | 00 | 000 | 00.0 | 00 | 00 | 90 | | PENTH = PAY FERICE = 1200 TC 1300 HOURS ON A WEEKDAY | | | | | - | | | | | - | | | - | | - | | |---------------|---------------------|--------------|-----------|--|--|------|--|------|--|---|-----------------------|----------|------|--|--------------------------| | | | 205 | 1.3186-05 | 0.34
0.36
0.36
0.36
0.36
0.36
0.36
0.36
0.36 | 3.74.66
3.74.676
0.566
6.04 | 000 | 000
000 | 000 | 2-2-2-2-2-2-2-2-2-2-2-2-2-2-2-2-2-2-2- | 6.04
6.04
6.04
6.04 | 000 | 000 | 999 | 1.010E-05
1.037E-06 | 1000
1000 | | | PEAN | TER) FT | 2-4106-04 | 047
747
000
000 | 2. CECE - 0. 2. C. | 000 | 000 | 800 | 2 - 545E - 6:
5 - 817E - 6:
4 - 512E - 61 | 20117
20117
10000 | - UDD | 000 | 000 | 3.1000
3.1000
3.1000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.000
3.0 | | | PPCRT SCLECES | PECEFICE LCCATION I | CGRAMS/CL. P | .852E-C | 1936-0
4766-0 | 3526 | 000 | 000 | | | 0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.0 | | | 000 | 6.663E-CE
2.823E-CE
2.553E-C | 048
044
046
000 | | ITA FROF AIRS | | FC WICH | - € 1 EE- | 2.040
6.040
6.040
6.040
6.00
6.00 | | 000 | 000 | | . 6683
2683
2683
1000
1000
1000
1000
1000
1000
1000
10 | 942E-0 | 9 00 | | | 8 055E-06
9 487E-01 | 9025 | | ENTRATICA DA | | 00 | 1.105E-01 | 245
2416
6666
6666 | 6.942E-02
5.086E-02
4.400E-02 | 000 | 000 | | 609 | 9 8
E - | 2-104E-01 | 000 | 000 | 5.207E-07
4.818E-04
3.936E-04 | 1-915E 00
1-207E 000 | | ECEFTOR CONCE | | TEFSI | 00.5 | 0000 | 000 | 2:00 | 67470
000
000 | 0000 | 10.00
11.00
00.00 | 2000 | 15.00 | 000 | 000 | 6.00
10.00 | 12.00 | | | | K ILCP | 0 | 000 | 000 | 000 | 000 | 900 | 000 | 000 | 000 | 000 | 000 | 000 | 000 | | | TECEPTOR I | | | | 1990 | | 11111111111111111111111111111111111111 | 200 | 2002 | 2002 | 205
1 205
1 210 | - C1/2/2 | 2012 | 25/25
26/18
26/18 | 222 | PENTH = PEY FERICE = 1200 TC 1300 HOURS ON A WEEKCAY | | | 205 | | | 000 | -5.560E-05 | 1 | | | 000 | | 400
600
600
600
600 | 47-1
27-0
2007
2007
2000 | | 0.0 | |--------------|---------------|-------------|--------------------------------------|-----|-------|------------------------|-------------------------------------|-------------------------------------|------------|------------|--------------------------|---|---|--|--------| | | FEAN | TEP) FT | | | | 425E-0 | 520
540
540
56 | | 600 | 000 | 0.0
-1.007E-10 | 2 - 3 - 3 - 5 - 5 - 5 - 5 - 5 - 5 - 5 - 5 | 27.00
27.00
14.10
14.10
14.10
14.10
14.10
14.10
14.10
14.10
14.10
14.10
14.10
14.10
14.10
14.10
14.10
14.10
14.10
14.10
14.10
14.10
14.10
14.10
14.10
14.10
14.10
14.10
14.10
14.10
14.10
14.10
14.10
14.10
14.10
14.10
14.10
14.10
14.10
14.10
14.10
14.10
14.10
14.10
14.10
14.10
14.10
14.10
14.10
14.10
14.10
14.10
14.10
14.10
14.10
14.10
14.10
14.10
14.10
14.10
14.10
14.10
14.10
14.10
14.10
14.10
14.10
14.10
14.10
14.10
14.10
14.10
14.10
14.10
14.10
14.10
14.10
14.10
14.10
14.10
14.10
14.10
14.10
14.10
14.10
14.10
14.10
14.10
14.10
14.10
14.10
14.10
14.10
14.10
14.10
14.10
14.10
14.10
14.10
14.10
14.10
14.10
14.10
14.10
14.10
14.10
14.10
14.10
14.10
14.10
14.10
14.10
14.10
14.10
14.10
14.10
14.10
14.10
14.10
14.10
14.10
14.10
14.10
14.10
14.10
14.10
14.10
14.10
14.10
14.10
14.10
14.10
14.10
14.10
14.10
14.10
14.10
14.10
14.10
14.10
14.10
14.10
14.10
14.10
14.10
14.10
14.10
14.10
14.10
14.10
14.10
14.10
14.10
14.10
14.10
14.10
14.10
14.10
14.10
14.10
14.10
14.10
14.10
14.10
14.10
14.10
14.10
14.10
14.10
14.10
14.10
14.10
14.10
14.10
14.10
14.10
14.10
14.10
14.10
14.10
14.10
14.10
14.10
14.10
14.10
14.10
14.10
14.10
14.10
14.10
14.10
14.10
14.10
14.10
14.10
14.10
14.10
14.10
14.10
14.10
14.10
14.10
14.10
14.10
14.10
14.10
14.10
14.10
14.10
14.10
14.10
14.10
14.10
14.10
14.10
14.10
14.10
14.10
14.10
14.10
14.10
14.10
14.10
14.10
14.10
14.10
14.10
14.10
14.10
14.10
14.10
14.10
14.10
14.10
14.10
14.10
14.10
14.10
14.10
14.10
14.10
14.10
14.10
14.10
14.10
14.10
14.10
14.10
14.10
14.10
14.10
14.10
14.10
14.10
14.10
14.10
14.10
14.10
14.10
14.10
14.10
14.10
14.10
14.10
14.10
14.10
14.10
14.10
14.10
14.10
14.10
14.10
14.10
14.10
14.10
14.10
14.10
14.10
14.10
14.10
14.10
14.10
14.10
14.10
14.10
14.10
14.10
14.10
14.10
14.10
14.10
14.10
14.10
14.10
14.10
14.10
14.10
14.10
14.10
14.10
14.10
14.10
14.10
14.10
14.10
14.10
14.10
14.10
14.10
14.10
14.10
14.10
14.10
14.10
14.10
14.10
14.10
14.10
14.10
14.10
14.10
14.10
14.10
14.10
14.10
14.10
14.10
14.10
14.10
14.10
16.10
16.10
16.10
16.10
16.10
16.10
16.10
16.10
16.10
16.10
16.10 | 600
600
600
600
600
600
600
600
600
600 | 0.0 | | APCRT SCLFCE | ED ARITHPETIC | GRAMS/CL. P | 3:3016-81 | 900 | 000 | -2-705E-C7 | 2.475E-C2
2.180E-C1
6.375E-C1 | 7.5388-61
6.8358-61
5.7068-61 | 000 | 800 | 9.0
-5.015E-C5 | 3-982E-C4 | 2:43:6-66 | 000
000
000
000
000
000
000
000
000
00 | 0.0 | | ITA FRCM AIR | EXPECTED | FCMICE | 34.23
3.43
3.643
6.0
0.0 | 900 | 000 | -2.651E-0E | 5.950E-03
9.103E-02
2.525E-01 | 3:7685-01 | 000 | 000 | 0:0
-4:953E-10 | 2.066E-05 | 3-964E-01 | 2.585E-01 | 0.0 | | ENTRATICH DA | | 9 | 470 | | 000 | -1.950E-07 | 900 | ī | 000 | 000 | 0.0
0.0
-3.618E-05 | 2 - 7 - 1 - 1 - 1 - 1 - 0 - 0 - 0 - 0 - 0 - 0 | | -00 | 0.0 | | ECEFTCR CONC | LCCATION | TEFS) | 000
000 | | 000 | 000 | 12.00 | 000 | 000 | 600
000 | 000
000 | 900 | 000 | 000 | 2.00 I | | | FECEPTCA | KILCPE | 000 | 000 | 000 | 000 | 000 | 000 | 000 | 000 | 000 | 000 | 61418U | 000 | 16.00 | | | FECEFICE | | 1700
1700
1744 | | 17070 | 0000
01001
01001 | 2000 | 2236
245
545 | | 2424 | 224 | 2019
2019
2019
2019 | 000
000
000
000
000 | 2000
2000
2000 | 1 255 | PENTH = PAY FERICE * 1200 TO 1300 HOURS ON A WEEKDAY | | u. | ECEFTOR CON | CENTRATION C | ITA FROM AIRPOR | PCRT SCUFCES | | ; ——
; : : : : : : : : : : : : : : : : : : : | |--------------------|------------|--------------------
--|---------------------------------|----------------------|--|---| | FECEFICE
NUMBER | FECEFTCF | LCCATION | \$100\$ (100) (100\$ (100\$ (100) (100) (100\$ (100) | EXPECTED | EC ARITHETIC | PEAN | | | | K ILCPE | TEFS) | 00 | FCMICE | GRAMS/CL. P | TER) FT] | 205 | | 266 | 16.00 | 00 | 00 | 90 | 00 | 00 | 00 | | | | 5.00
 | 73E-0 | 0.0
0.0
1.615E-05 | 62 EF-C | 26 E - | 0.0
0.0
5.754E-10 | | 222 | 000 | 00.00
10.00 | 2-563E-07
2-394E-06
6-786E-05 | 303E-0 | 722E-0
320E-C | 66.00
66.00
66.00
66.00
66.00
66.00 | | | | 16.00 | 12.00 | 200 | 523
643
600
600
600 | 80% | 4.00 | 2.642E-05
2.642E-05
2.563E-05 | | 1222 | 116.000 | 15.00 | 2-460E-01
4-237E-01 | 20
- 00 | 90 | 2 162E - 61
3 - 702E - 61 | 90 | | | 000 | 000 | 000 | 000 | 000 | 000 | 000 | | 1 | 900 | 40.0
000
000 | 000 | 900 | 000 | 666 | 000 | | 2 w 2 1 | 000 | 000 | 10.0
0.0
1.832E-08 | 0.0
0.0
2.52EE-05 | 0
0
541E-C | 00 BE-1 | 000
000
000
000
000
000
000 | | W@W 1 | 000 | 11-00 | 966
666
966
966
966
966
966 | 251E-0
325E-0
30E-0 | 1129E-5 | 1030
1030
1026
1026
1030 | 1000
1000 | | 225 | 000 | 000 | 1-146E-02
5-887E-02
1-545E-01 | 9130 | 724E
756E
815E | 240
240
240
200
200 | 1254 | | 85 C | mmm
000 | 2.00 | 000 | 990 | 000 | 900 | 999 | | 222 | mam
000 | 614.0
000 | 000 | 000 | 000 | 900 | 000 | | S | 900 | 90 | 00 | 00 | 00 | | 00 | PENTH = PAY FERICE = 1200 TC 1300 HOURS ON A WEEKDAY | | ;
;
;
;
;
;
; | \$62 | 0.0 | -00 | 000 | 400 | 000 | | | , | | | 200 | | 2,44
0-00
0-00
0-00
0-00
0-00
1 1 1
1-00 | |-----------------|---------------------------------|--------------|------|-------------------------------------|---|---|----------------------|------|---|-------------------------------------|---|-----------------------|---------------------|-------------------|---| | | FEAN | TER) FT I | 0.0 | 5-6766-12
5-5016-05
2-2046-07 | - 46.66
- 05.66
- 05.6 | -357E- | 000 | | 000
013E-1 | 3010 | 32 AE - 6 | 900 | 900 | 000 | 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - | | PCRT SCLFCES | EC ARITHETIC | GRAMS/CU. PE | 0.0 | 825E-1 | 100 | -785E-C | 000 | 000 | 0.0
0.0
1.502E-CE | 1.1071
1.037E
1.040E
1.055 | 275E-C
665E-C | 000 | 000 | 000 | 8.725E-10
1.175E-67 | | TA FRCF AIF | EXPECTED | F) | 0.0 | 4.755E-11
2.757E-0E
1.512E-06 |
464
465
465
465
665
665
665
665
665
665 | 16E-0 | | 000 | -00
-454E-0 | 1.372E-07
5.370E-06
1.002E-04 | 126 | | 000 | | 10 - 5 - 5 - 5 - 5 - 5 - 5 - 5 - 5 - 5 - | | ONCENTRATICA CA | | כפ | 0.0 | 3-478E-10
1-97EE-07
7-664E-06 | 1.073E-04
1.393E-02
1.108E-02 | 3 78E- | 000 | 000 | 0.0
0.0
1.083E-08 | 564m
904m
904m
904m | 00 00 00 00 00 00 00 00 00 00 00 00 00 | 000 | 000 | 000 | 6.292E-10
8.587E-08
2.359E-06 | | ECEFTOR CONC | LCCATION | TEPS) | E-00 | 2000 | 000 | 00-00-00-00-00-00-00-00-00-00-00-00-00- | 000 | 000 | 600
000
000 | 0000 | 44.0 | 000
000 | 40.40
000
000 | 000
000
~wo | 000 | | | PECEFTCE | KILOPE | • 1 | 900
900 | | | 000 | 0000 | 15.00 | | | 000 | 000 | 000
000
000 | 000
000
000 | | | FECEFICE I | | 257 | 1122
0.556
0.556 | -7/6;
000
000 | uiului
000
441A | 91919
000
0471 | | (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) | | 1000
1000
1000
1000
1000
1000
1000
100 | 10000
1000
1004 | 212C | WSD
NORTH | लागना
जागना
च्याना | PENTH = PRY FEPICE = 1200 TC 1200 HOURS ON A MEEKDAY | | 4
4
5
5
7
8
8
8
8 | | 1.000000000000000000000000000000000000 | 900 | 000 | 900 | 0-0
0-0
4-402E-10 | 000
000
000
000
000
000
000
000
000
00 | 0000 | 900 | 000 | 000 | 4144
1004
1004
1004
1004
1004
1004
1004 | 244E-0 | 0.0 | |---------------|---|-----------|--|---------|------|------|-------------------------|---|-----------------|------------|-------|-----|--|--|------| | | FEBA | _ | | 900 | | | 0.0
0.0
2.458E-10 | 001/H
000/H
000/H | 000 | | | 800 | | 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 | | | CRT SCLFCE | C ARITHETIC | AMS/CL. P | | 000 | | | 0.0
0.0
1.245E-CE | | 208E-C | 1 | | 000 | | 00
00
00
00
00
00
00
00
00
00
00
00
00 | | | ITA FROM AIRE | EXPECTE | FEFE | 1.520E-C:
1.710E-04 | 000 | 000 | 000 | 0.0
0.0
1.239E-05 | 8 182E-06
3 2 341E-06
3 2 6 2 E-06 | 400
500
6 | 000 | 000 | 000 | 1.355E-10
1.076E-06
3.663E-07 | 281E-0 | 0.0 | | ENTRATICN CA | | CC | 2.083E-05
2.236E-04 | 000 | 000 | 000 | 0.0
0.0
8.977E-05 | 285
285
285
600
600 | 625E-0 | 000 | 000 | 000 | 9.851E-10
5.532E-08
1.052E-C6 | .149E-0
.812E-0 | 0.0 | | ECEFTOR CONC | LCCATION | TEFS) | | 000 | 000 | 000 | 000 | 000 | 000 | 000
000 | 000 | 000 | 000 | 000 | 1.00 | | α. | RECEPTCE | KILCPE | 000 | 000 | 000 | 000 | | 000 | 000 | 900 | 000 | 000 | 000 | 000 | 9 | | | FECEFTCE
NUMEEF | | meim i | CHOCK I | 4441 | 4441 | 444
0000
4000 | 4 RUAL I | | GIGIGI | RIRIA | 222 | 4414
4414 | (1)(1)(1)
(1)(1)(1)
(1)(1)(1)(1)
(1)(1)(1)(1)(1)
(1)(1)(1)(1)(1)
(1)(1)(1)(1)(1)
(1)(1)(1)(1)(1)
(1)(1)(1)(1)
(1)(1)(1)
(1)(1)(1)
(1)(1)(1)
(1)(1)(1)
(1)(1)(1)
(1)(1)(1)
(1)(1)(1)
(1)(1)(1)
(1)(1)(1)
(1)(1)(1)
(1)(1)(1)
(1)(1)(1)
(1)(1)(1)
(1)(1)(1)
(1)(1)
(1)(1)
(1)(1)
(1)(1)
(1)(1)
(1)(1)
(1)(1)
(1)(1)
(1)(1)
(1)(1)
(1)(1)
(1)(1)
(1)(1)
(1)(1)
(1)(1)
(1)(1)
(1)(1)
(1)(1)
(1)(1)
(1)(1)
(1)(1)
(1)(1)
(1)(1)
(1)(1)
(1)(1)
(1)(1)
(1)(1)
(1)(1)
(1)(1)
(1)(1)
(1)(1)
(1)(1)
(1)(1)
(1)(1)
(1)(1)
(1)(1)
(1)(1)
(1)(1)
(1)(1)
(1)(1)
(1)(1)
(1)(1)
(1)(1)
(1)(1)
(1)(1)
(1)(1)
(1)(1)
(1)(1)
(1)(1)
(1)(1)
(1)(1)
(1)(1)
(1)(1)
(1)(1)
(1)(1)
(1)(1)
(1)(1)
(1)(1)
(1)(1)
(1)(1)
(1)(1)
(1)(1)
(1)(1)
(1)(1)
(1)(1)
(1)(1)
(1)(1)
(1)(1)
(1)(1)
(1)(1)
(1)(1)
(1)(1)
(1)(1)
(1)(1)
(1)(1)
(1)(1)
(1)(1)
(1)(1)
(1)(1)
(1)(1)
(1)(1)
(1)(1)
(1)(1)
(1)(1)
(1)(1)
(1)(1)
(1)(1)
(1)(1)
(1)(1)
(1)(1)
(1)(1)
(1)(1)
(1)(1)
(1)(1)
(1)(1)
(1)(1)
(1)(1)
(1)(1)
(1)(1)
(1)(1)
(1)(1)
(1)(1)
(1)(1)
(1)(1)
(1)(1)
(1)(1)
(1)(1)
(1)(1)
(1)(1)
(1)(1)
(1)(1)
(1)(1)
(1)(1)
(1)(1)
(1)(1)
(1)(1)
(1)(1)
(1)(1)
(1)(1)
(1)(1)
(1)(1)
(1)(1)
(1)(1)
(1)(1)
(1)(1)
(1)(1)
(1)(1)
(1)(1)
(1)(1)
(1)(1)
(1)(1)
(1)(1)
(1)(1)
(1)(1)
(1)(1)
(1)(1)
(1)(1)
(1)(1)
(1)(1)
(1)(1)
(1)(1)
(1)(1)
(1)(1)
(1)(1)
(1)(1)
(1)(1)
(1)(1)
(1)(1)
(1)(1)
(1)(1)
(1)(1)
(1)(1)
(1)(1)
(1)(1)
(1)(1)
(1)(1)
(1)(1)
(1)(1)
(1)(1)
(1)(1)
(1)(1)
(1)(1)
(1)(1)
(1)(1)
(1)(1)
(1)(1)
(1)(1)
(1)(1)
(1)(1)
(1)(1)
(1)(1)
(1)(1)
(1)(1)
(1)(1)
(1)(1)
(1)(1)
(1)(1)
(1)(1)
(1)(1)
(1)(1)
(1)(1)
(1)(1)
(1)(1)
(1)(1)
(1)(1)
(1)(1)
(1)(1)
(1)(1)
(1)(1)
(1)(1)
(1)(1)
(1)(1)
(1)(1)
(1)(1)
(1)(1)
(1)(1)
(1)(1)
(1)(1)
(1)(1)
(1)(1)
(1)(1)
(1)(1)
(1)(1)
(1)(1)
(1)(1)
(1)(1)
(1)(1)
(1)(1)
(1)(1)
(1)(1)
(1)(1)
(1)(1)
(1)(1)
(1)(1)
(1)(1)
(1)(1)
(1)(1)
(1)(1)
(1)(1)
(1)(1)
(1)(1)
(1)(1)
(1)(1)
(1)(1)
(1)(1)
(1)(1)
(1)(1)
(1)(1)
(1)(1)
(1)(1)
(1)(1)
(1)(1)
(1)(1)
(1)(1)
(1)(1)
(1)(1)
(1)(1)
(1)(1)
(1)(1)
(1)(1)
(1)(1)
(1)(1)
(1)(1)
(1)(1)
(1)(1)
(1)(1)
(1)(1)
(1)(1)
(1)(1)
(1)(1)
(1)(1)
(1)(1)
(1)(1)
(1)(1)
(1)(1)
(1)(1)
(1)(| 370 | PERTH - PAY FERICE - 1200 TC 1300 HOURS ON A WEEKDAY | | | \$5.2 | 00 | 500 | 900 | 0.0
4.007E-12 | 6.00
6.00
6.00
6.00
6.00
6.00
6.00
6.00 | 000 | 900 | 500 | 000 | 6-1436-11
2-1236-11
2-1236-05 | 1.455E-07 | |-----------------------|--|--------------|-------------------------------------|-----------------------------------|--------------------------------------|---|--|-----------------|------------------------|------------------------------|------------------------|--|-----------| | !
!
!
!
! | FERN | TER) FT] | 90 | 000 | 900 | 3-065E-12
2-254E-1C | 7 - 56 - 6 - 6 - 6 - 6 - 6 - 6 - 6 - 6 - | 900 | 900 | | 500 | 3-46-E-11-4-207E-05 | 1.36:E-06 | | IRPORT SCURCES | C ARITHMETIC | GRAMS/CC. PE | 00 | 000 | 000 | 1.538E-10 | 2.5146-C1
1.7946-C6 | 000 | 000 | 000 | 000 | 1-7366-65
4-8966-65
6-0656-63 | 4.614E-CE | | TA FROM AIRP | EXPECTED | | 00 | 000 | 000 | 0.0
1.530E-11
1.452E-05 | 1.923E-06
1.327E-06 | 900 | 000 | 000 | 000 |
1.725E-10
9.784E-05
2.340E-07 | 3.02EE-06 | | CONCENTRATION CA | | 8 | 00 | 000 | 000 | 0.0
1.109E-10
8.351E-05 | 2.453E-07
2.170E-05 | 000 | 000 | 000 | 000 | 3.023
3.023
5.4026
1.03
1.03
1.03
1.03
1.03
1.03
1.03
1.03 | 5.089E-06 | | PECEFTOR CON | LCCATION | TEFS) | 2-00 | 4/VA
000
000 | 000 | 1000 | 14.00 | 000-12 | 1014A1 | 900 | 200
000
000 | 000-51 | 15.00 | | a . | RECEPTCF LCCATION | KILCYE | 25 00
00
00
00
00
00 | 000
000 | 170117
170117
170117
170117 | 1717N
1717N
1000 | 6000
6000 | 000
000 | 244
200
000 | 200
200
200 | 000
000 | 244
200
000 | 24.00 | | - | FECE
FECE
FECE
FECE
FECE
FECE
FECE
FECE | | 1/6 | נונונו
ביובו
ביובו
נויבו | הופונו)
הארש | 2000
2000
2000
2000
2000
2000
2000
200 | | 61416)
61416 | 620101
8000
8000 | 2000
2000
2000
2000 | 616161
0000
4100 | - 30 K | 1 400 | MCNTH = MEY FERICE = 1200 TG 1300 HOURS ON A WEEKDAY | \vdash | | | | | | | | | | | | | | | | |-----------------|---|-------------|-----|---------|---------------|-----|--------------------|------|-----|-------|-------------------|-------------------|---|-----|------| | | | \$ \$62 | 000 | 000 | 000 | 999 | 900 | 000 | 900 | 000 | 000 | 000 | 900 | 900 | 0.0 | | · | CHEAN | ETER) FT | 000 | 000 | 000 | 900 | 900 | 000 | 000 | 900 | 900 | 000 | 990 | 900 | 0.0 | | PAFT SCUFCE | C ARITHETI | GRAMS/CL. P | 000 | 000 | 000 | 000 | 000 | 000 | 000 | 900 | 000 | 000 | 000 | 900 | 0.0 | | TA FROM AIFCRAF | EXPECTED | FCAICAC | 000 | 000 | 000 | 000 | 000 | 000 | 000 | 900 | 000 | 000 | 000 | 000 | 0.0 | | CENTRATICN CA | | 00 | 000 | 000 | 000 | 000 | 000 | 000 | 000 | 000 | 000 | 000 | 000 | 000 | 0.0 | | CEFTCR CCNCE | LCCATION | EFS) | | | - p | 4 | 4 part land 1844 p | 0000 | | | 000
000
000 | 000 | 95.00 | J | 4.00 | | a . | RECEFICA L | XXILCPET | 999 | 000 | 000 | 000 | 900 | 000 | 000 | 000 | 900 | 000
000
••• | 000 | 000 | 2.00 | | | 76.00
CE 76.00
CE 76.00
CE 76.00 | | | 44140 | ⊢ αυ.ν | 0-2 | (1) (FU) | 924 | V01 | 1767E | 200 | 9000
1000 | with the state of | | 1 16 | MENTH = PAY FERIOC = 12CG TO 1300 MOURS ON A WEEKDAY | | | ECEFTOR CCNO | CENTRATICA E | TA FROM AIR | RAFT SCURCE | | | |--------------|-----------------------|-------------------|-------------------------|------------------|-------------------------|---------------------------------|-----| | FECE FICE | RECEPTOR | LCCATION | | EXPECTED | O ARITHETIC | PEAN | | | | KILCP | TEFS) | ຍ | FCMICA | GRAMS/CL. M | TER! FT | 205 | | W.C. | 90 | 000 | 00 | 00 | 00 | 00 | 00 | | 444
Onto | 000 | 000
000
000 | 000 | 000 | 000 | 000 | 990 | | 444
U481 | 000
000 | | 000 | 000 | 000 | 000 | 000 | | 444
ALM | 000 | 000
000 | 000 | 000 | 000 | 000 | 900 | | 48.61
NOM | 000 | 000
000 | 000 | 000 | 000 | 000 | 000 | | (A614) | 000 | 600
000 | 000 | 000 | 000 | 000 | 909 | | מושר | 600
600 | 900 | 000 | 500
500 | 000 | 900 | 000 | | nuna
mna | (Altrib) | 000 | 000 | 000 | 000 | 990 | 999 | | | 6367111
600
600 | | 0.0
0.0
9.375E-07 | 0.0
4.688E-06 | 0.0
0.0
1.065E-04 | 200
000
062E-04 | 000 | | 484
484 | 000
000 | 1000 | 1-160E-06
0-0 | 58E-06 | 1.322E-04 | 000
000
000
000
000 | 960 | | -wv | 000 | 000 | 000 | | 000 | 909 | 000 | | 5-C | 000 | 000 | 000 | 000 | 000 | 000 | 000 | | 214 | 90 | 800 | 9 0 | | 00 | 00 | 00 | PENTH = PLY FEPICE = 1200 TC 1300 HOURS ON A WEEKEAY | | 1
1
1
1
1
1
1
1
5 | 203 | 0 | 442E-0 | 100
100
100
100
100
100
100 | 000 | 000 | 900 | 5000 | 2000
2000
2000
2000
2000
2000 | 900 | 000 | 990 | 342 | 1 2428
1 2024
1 2024
1 2024 | |--------------|---|---|-------|---|---|---------------------------|---------------------|----------------|----------------------------|---|-------------|-----|-------------------|---|--| | | FEDN | TER) FT | 0 | 1 - 3 - 3 - 3 - 3 - 3 - 3 - 3 - 3 - 3 - | 76 SE-0 | 000 | 000 | 205E-0 | 2016 | 1 - 1 CCE - 0 2 - 0
2 - 0 2 - | 990 | 900 | 000
005E-C | 100h | 000
000
000
000 | | RAFT SCURCES | O ARITHETIC | GPAMS/CL. PE | 0 | 7-247E-C4
8-166E-C4
1-025E-03 | 0 7 SE-C | 000 | 200 | 216 | 186E-C
627E-C
687E-C | 8.16.E.C.3
7.630E.C.3
7.630E.C.3 | 000 | 900 | 1776-0 | 220 | 201 | | F AI | EXPECTE | F 1 C 8 C 8 C 8 C 8 C 8 C 8 C 8 C 8 C 8 C | 0 | 5.0178E-05
5.0045E-05
5.005E-05 | 267E-0 | 000 | 000 | 410E-0 | -073E-0 | 5.352E-04
5.420E-04
5.464E-04 | 000 | 000 | 730E-0 | 2.0.4
2.0.4
2.0.4
0.0.0
1.1 | 2.5
2.5
2.5
2.5
2.5
2.5
3.5
4.0
3.5
4.0
3.5
4.0
4.0
4.0
5.0
5.0
5.0
5.0
5.0
5.0
5.0
5.0
5.0
5 | | ENTRATICH CA | | 00 | | 6-357E-06
2-158E-04
2-124E-04 | 300
000
000
000
000 | 000 | 000 | 21E-0 | 22E-0 | 1.915E-03
1.916E-03
1.880E-03 | | 000 | 35E-0 | -00 | 000
900
900
900
900
900
900 | | ECEFICA CONC | LCCATION | TEFS) | 16.00 | 000 | 4n10 | 000 | 4.n.m
000
000 | 000 | 000 | 000 | 000 | 000 | 000
000
4-6 | 200
200
200 | 2000
0000
0000 | | | PECEPTCF | KILCHE | 4.00 | 000 | 000 | 000 | 000 | 000 | COO | 600
600 | 000 | 000 | 000 | 900 | 000 | | | FECEFICE I | 1 | 26 | | V-000 | amm
(Airid,
(Airid, | #1410 | 88.00
80.00 | 135 | 4.87.0 | Ann
Lenn | 000 | U148) | 000 | U | H = PAY PERICC = 1200 TC 1300 HOURS ON A WEEKCAY | | 1 | FECEFTCR CON | CENTRATICA CA | TA FROM ATE | CRAFT SCURCES | | ;
;
;
;
; | |--|---|--|--|--|-------------------|---|---| | 7.7
7.7
7.7
7.6
7.6
7.6 | RECEPTOR | LCCATION | | EXPECTED | EC ARITHETIC | FEAN | | | | KILCP | TEFS) | 0 | F 0 1 | GRAMS/CL. P | TER) FT | \$02 | | | 999 | 1000
000
000 | 7.533E-03 | 000.
000.
000.
000.
000.
000.
000.
000 | 2.85EE-C2
0.0 | 0000
0000
0000
0000 | 4.00 | | | 900 | 000
000 | 000 | 000 | 000 | 000 | 000 | | 1210 | 900 | 000 | 900E-1 | 0.0
0.0
2.673E-11 | 4.00.0
611E-10 | 0:0
2:1636-05 | 000 | | MON! | 000 | ************************************** | 000
004
004
004
000 | 1 - 3656 - 03
9 - 3546 - 03
1 - 1246 - 02 | 2-383E-52 | 1:2556-01 | 2.151
6.25
6.25
6.25
6.25
6.25
6.25
6.25
6.25 | | 455 | 990 | 000 | 4-096E-02
3-512E-02
108E-02 | 2000
1000
1111 | 1.9565-61 | 1:1356-61 | 24.0
24.1
24.1
24.1
24.1
24.1
24.1 | | 115.
12.8
12.8
12.8
12.8
13.8
13.8
13.8
13.8
13.8
13.8
13.8
13 | 000 | 400 | 94.0
9.0
9.0
9.0
9.0
9.0
9.0
9.0
9.0
9.0
9 | 1.676E-02
2.070E-02 | 7:324E-83 | 1:31915-81 | 1:4216-84 | | O-N
HINNI
HINNI
HINNI | 990 | 000 | 000 | 000 | 000 | 000 | 000
000 | | | 900
900 | 900 | 0.0
0.0
3.746E-09 | 0.0
0.0
1.08(E-05 | 0.0
1.334E-C8 | 0.0
0.0
1.255E-0 | 000 | | 411
4110
4110 | 000
000 | 000 | -078E-04 | 5.880
1.2546
0.33
1.4016
0.33 | 1:928-81 | 4 - 4 - 4 - 4 - 4 - 4 - 4 - 4 - 4 - 4 - | 1.5746-15 | | 2044 | 000
000 | 000 | 3:3216-01 | 2500
2500
2500
2500
2500
2500
2500
2500 | 3:993E-81 | 000 | 4.250E-04 | | | 000 | 000 | 3-129E-01
3-307E-01 | 200 | 2-121E-01 | 200m | 6000
444 | | 444 | 990 | 000 | 000 | 000 | 000 | 000 | 999 | | 1 146 | 2.00 | 3.00 | | 0.0 | 0.0 | 0.0 | 0.0 | 200 | 1444 | 144 | 2.801E-06 3.006E-04 1.657E-04 2-055E-04 1-555E-04 8 • 2 1 º E · O 6 2-721E-03 2-105E-03 1-956E-03 000 55 4.822 4.822 4.126 4.126 umo 000 ш 2.263E 1.663E 2.526 PEAN ER) CP AIRCRAFT SCLECES 000 000 23 CGRAMS/CL. 1.354 244 | 244 | 444 | 244 |
244 | 1-954E-1.644E-01 4.700E-02 2.383E-01 2.304E-01 2-386E-02 1-967E-01 WEEKCAY 229 240 229 240 226 240 280 240 480 440 FRCP шш 1.4816 000 7.669E-02 6-114E-01 4-912E-01 0.0 1.823E-02 1.969E-01 1.135E-01 568 588 888 Z 1.548E-01 7.187E-01 6.878E-01 CCNCENTRATION 4w0 000 2.091E 1.704E 1.551E #00 000 #00 000 3-485 1-8405 1-8406 884 4424 8421 371E 827E 835E Si HOUPS 946 1300 000 000 000 000 000 000 4700 000 900 80 000 000 0000 80 RECEPTOR LCCATION NAS PIRAPER FERICE = 1200 KILCPETEFS 00 000 900 000 000 000 000 000 000 000 000 000 000 11.00 417 ACE FICE 1404 LAC 70 | -----225 750 999 500 ----PCNTF MOID eimini min 81 PENTH - PAY NEERICE - 1200 TO 1300 HOURS ON A WEEKDAY RCNTH = PEY FERICE = 1200 TO 1300 HOURS ON A WEEKEAY | | | | | | - | - | _ | | | | | | - | | _ | |----------------|-------|---------------|-----------------------------------|---|---|-------------------------------------|--
---|----------------------|-------------------|---|--|--|-------------------|---------| | | | 203 | 7-131E-03 | 000 | 1-5476-05 | 27000-0000 | | | 000 | 000 | 0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.0 | | 2004
2004
2004
2000
2000 | 1526-0 | 0.0 | | 2 | - i | TER! FT | | 000 | 742E 0 | 000 | 2400 | College
College
College
College
College
College
College
College
College
College
College
College
College
College
College
College
College
College
College
College
College
College
College
College
College
College
College
College
College
College
College
College
College
College
College
College
College
College
College
College
College
College
College
College
College
College
College
College
College
College
College
College
College
College
College
College
College
College
College
College
College
College
College
College
College
College
College
College
College
College
College
College
College
College
College
College
College
College
College
College
College
College
College
College
College
College
College
College
College
College
College
College
College
College
College
College
College
College
College
College
College
College
College
College
College
College
College
College
College
College
College
College
College
College
College
College
College
College
College
College
College
College
College
College
College
College
College
College
College
College
College
College
College
College
College
College
College
College
College
College
College
College
College
College
College
College
College
College
College
College
College
College
College
College
College
College
College
College
College
College
College
College
College
College
College
College
College
College
College
College
College
College
College
College
College
College
College
College
College
College
College
College
College
College
College
College
College
College
College
College
College
College
College
College
College
College
College
College
College
College
College
College
College
College
College
College
College
College
College
College
College
College
College
College
College
College
College
College
College
College
College
College
College
College
College
College
College
College
College
College
College
College
College
College
College
College
College
College
College
College
College
College
College
College
College
College
College
College
College
College
College
College
College
College
College
Colleg | 900 | 000 | 44.00
4.00
6.00
6.00
6.00
6.00
6.00
6.00 | 0416
0406
0000 | 200
000
000
000 | 10 | 0.0 | | F G | AKIIF | CGRAMS/CL. PE | 3-93EE CC
3-502E CC
0-0 | | 0.0
0.0
9.284E-C1 | | 635E
635E | ###
9000
9000
9000
9000
9000 | 000 | 000 | 976 | 2.5561E
2.5561E
2.553EE
COO | 90%
67%
67%
67%
67% | 495E C | 1 . | | ATA FROM AIRCR | EAVEC | I FC HICK | | 000 | | | 31
21
21
21
21
21
21
21
21
21
21
21
21
21 | W-R | 000 | | 1966
4 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 | 3258
1926
1926
1926
1926
1926
1926
1926
1926 | 000
230
230
230
230
230
230
230
230
230 | 000
000
000 | 0.0 | | ENTRATICN D | | 8 | 2.324E 01
2.051E 01
0.0 | 000 | 0.0
0.0
3.471E-01 | 5.550E-01
3.63EE-01
4.616E-01 | | 2.034E 01
2.094E 01
2.094E 01 | 000 | 000 | 6.912E-03
1.012E-03
1.106E-00 | 9-337E-01
1-029E-00
2-523E-00 | 5-860E 00
1-034E 01 | 9000
000 | 0.0 | | ECEFICA CON | | TEFS) | 14.00
G-00 | 000 | 441A
000 | D00 | 000 | 6.44
6.00
6.00
6.00 | 1.00 | 000 | 4-00
1-00
8-00 | 10.00 | 12.00 | 1:00 | 2.00 | | | . 1 | KILCP | 000 | 000 | 244
000
000 | 200 | 144
444
000 | 244
200
000 | 2000
000 | 000
000
000 | 000
000
uuuu
mmm | 000 | | 000
000 | 16.00 | | 13333 | | | (200)
(200)
(200)
(248) |
121212
121212
121212
121212
121212
121212
121212
121212
121212
121212
121212
121212
121212
121212
121212
121212
121212
121212
121212
121212
121212
121212
121212
121212
121212
121212
121212
121212
121212
121212
121212
121212
121212
121212
121212
121212
121212
121212
121212
121212
121212
121212
121212
121212
121212
121212
121212
121212
121212
121212
121212
121212
121212
121212
121212
12121
12121
12121
12121
12121
12121
12121
12121
12121
12121
12121
12121
12121
12121
12121
12121
12121
12121
12121
12121
12121
12121
12121
12121
12121
12121
12121
12121
12121
12121
12121
12121
12121
12121
12121
12121
12121
12121
12121
12121
12121
12121
12121
12121
12121
12121
12121
12121
12121
12121
12121
12121
12121
12121
12121
12121
12121
12121
12121
12121
12121
12121
12121
12121
12121
12121
12121
12121
12121
12121
12121
12121
12121
12121
12121
12121
12121
12121
12121
12121
12121
12121
12121
12121
12121
12121
12121
12121
12121
12121
12121
12121
12121
12121
12121
12121
12121
12121
12121
12121
12121
12121
12121
12121
12121
12121
12121
12121
12121
12121
12121
12121
12121
12121
12121
12121
12121
12121
12121
12121
12121
12121
12121
12121
12121
12121
12121
12121
12121
12121
12121
12121
12121
12121
12121
12121
12121
12121
12121
12121
12121
12121
12121
12121
12121
12121
12121
12121
12121
12121
12121
12121
12121
12121
12121
12121
12121
12121
12121
12121
12121
12121
12121
12121
12121
12121
12121
12121
12121
12121
12121
12121
12121
12121
12121
12121
12121
12121
12121
12121
12121
12121
12121
12121
12121
12121
12121
12121
12121
12121
12121
12121
12121
12121
12121
12121
12121
12121
12121
12121
12121
12121
12121
12121
12121
12121
12121
12121
12121
12121
12121
12121
12121
12121
12121
12121
12121
12121
12121
12121
12121
12121
12121
12121
12121
12121
12121
12121
12121
12121
12121
12121
12121
12121
12121
12121
12121
12121
12121
12121
12121
12121
12121
12121
12121
12121
12121
12121
12121
12121
12121
12121
12121
12121
12121
12121
12121
12121
12121
12121
12121
12121
12121
12121
12121
12121
12121
12121
12121
12121
12121
12121
12121
12121
12121
12121
12121 | 12/2/2/2/2/2/2/2/2/2/2/2/2/2/2/2/2/2/2/ | 22.0KA
1.1C.1C)
1.1C.1C) | (1)(1)(1)
(1)(1)(1)
(1)(1)(1)
(1)(1)(1)
(1)(1)(1)
(1)(1)(1)
(1)(1)(1)
(1)(1)(1)
(1)(1)(1)
(1)(1)(1)
(1)(1)(1)
(1)(1)(1)
(1)(1)(1)
(1)(1)(1)
(1)(1)(1)
(1)(1)(1)
(1)(1)(1)
(1)(1)(1)
(1)(1)(1)
(1)(1)(1)
(1)(1)(1)
(1)(1)(1)
(1)(1)(1)
(1)(1)(1)
(1)(1)(1)
(1)(1)(1)
(1)(1)(1)
(1)(1)(1)
(1)(1)(1)
(1)(1)(1)
(1)(1)(1)
(1)(1)(1)
(1)(1)
(1)(1)
(1)(1)
(1)(1)
(1)(1)
(1)(1)
(1)(1)
(1)(1)
(1)(1)
(1)(1)
(1)(1)
(1)(1)
(1)(1)
(1)(1)
(1)(1)
(1)(1)
(1)(1)
(1)(1)
(1)(1)
(1)(1)
(1)(1)
(1)(1)
(1)(1)
(1)(1)
(1)(1)
(1)(1)
(1)(1)
(1)(1)
(1)(1)
(1)(1)
(1)(1)
(1)(1)
(1)(1)
(1)(1)
(1)(1)
(1)(1)
(1)(1)
(1)(1)
(1)(1)
(1)(1)
(1)(1)
(1)(1)
(1)(1)
(1)(1)
(1)(1)
(1)(1)
(1)(1)
(1)(1)
(1)(1)
(1)(1)
(1)(1)
(1)(1)
(1)(1)
(1)(1)
(1)(1)
(1)(1)
(1)(1)
(1)(1)
(1)(1)
(1)(1)
(1)(1)
(1)(1)
(1)(1)
(1)(1)
(1)(1)
(1)(1)
(1)(1)
(1)(1)
(1)(1)
(1)(1)
(1)(1)
(1)(1)
(1)(1)
(1)(1)
(1)(1)
(1)(1)
(1)(1)
(1)(1)
(1)(1)
(1)(1)
(1)(1)
(1)(1)
(1)(1)
(1)(1)
(1)(1)
(1)(1)
(1)(1)
(1)(1)
(1)(1)
(1)(1)
(1)(1)
(1)(1)
(1)(1)
(1)(1)
(1)(1)
(1)(1)
(1)(1)
(1)(1)
(1)(1)
(1)(1)
(1)(1)
(1)(1)
(1)(1)
(1)(1)
(1)(1)
(1)(1)
(1)(1)
(1)(1)
(1)(1)
(1)(1)
(1)(1)
(1)(1)
(1)(1)
(1)(1)
(1)(1)
(1)(1)
(1)(1)
(1)(1)
(1)(1)
(1)(1)
(1)(1)
(1)(1)
(1)(1)
(1)(1)
(1)(1)
(1)(1)
(1)(1)
(1)(1)
(1)(1)
(1)(1)
(1)(1)
(1)(1)
(1)(1)
(1)(1)
(1)(1)
(1)(1)
(1)(1)
(1)(1)
(1)(1)
(1)(1)
(1)(1)
(1)(1)
(1)(1)
(1)(1)
(1)(1)
(1)(1)
(1)(1)
(1)(1)
(1)(1)
(1)(1)
(1)(1)
(1)(1)
(1)(1)
(1)(1)
(1)(1)
(1)(1)
(1)(1)
(1)(1)
(1)(1)
(1)(1)
(1)(1)
(1)(1)
(1)(1)
(1)(1)
(1)(1)
(1)(1)
(1)(1)
(1)(1)
(1)(1)
(1)(1)
(1)(1)
(1)(1)
(1)(1)
(1)(1)
(1)(1)
(1)(1)
(1)(1)
(1)(1)
(1)(1)
(1)(1)
(1)(1)
(1)(1)
(1)(1)
(1)(1)
(1)(1)
(1)(1)
(1)(1)
(1)(1)
(1)(1)
(1)(1)
(1)(1)
(1)(1)
(1)(1)
(1)(1)
(1)(1)
(1)(1)
(1)(1)
(1)(1)
(1)(1)
(1)(1)
(1)(1)
(1)(1)
(1)(1)
(1)(1)
(1)(1)
(1)(1)
(1)(1)
(1)(1)
(1)(1)
(1)(1)
(1)(1)
(1)(1)
(1)(1)
(1)(1)
(1)(1)
(1)(1)
(1)(1)
(1)(1)
(1)(1)
(1)(1)
(1)(1)
(1)(1)
(1)(1)
(1)(1)
(1)(1)
(1)(1)
(1)(1)
(1)(1)
(1)(1)
(1)(1)
(1)(1)
(1)(1)
(1)(1)
(1)(1)
(1)(1)
(1)(1)
(1)(1)
(1)(1)
(1)(1)
(1)(1)
(1)(1)
(1)(1)
(1)(1)
(1)(1)
(1)(1)
(1)(1)
(1)(| 2222
2238
2456 | 1255
1255
1255 | 2002 | 222
244
244 | NUMBER 1 | 6000
10010
10411 | SON | 1 255 I | PENTH - PAY PERICE - 1200 TO 1300 HOURS ON A WEEKDAY | | | ECFFTOR CONC | ENTRATION CA | TA FACH AIS | CRAFT SCLECES | | | |----------------------|----------------------|--------------------|---------------------------------|---|--|---|---| | FECEFICA | PECEFICA | LCCATION | | EXPECTED | AR | VEL | \$
 | | | נאזרכאנ | TEFS) | ນ | 0 H D T T T T T T T T T T T T T T T T T T | GRAMS/CL. F | TER) FT | 205 | | 260 | 16.00 | 000 | 000 | 90 | 00 | 00 | 00 | | 2222 | 900 | 81W/~ | 8:0
1:577E-01 | 0.0
9.020E-02 | 004 | 0.0
0.0
0.0
760E-01 | 00-
11 E-04 | | 266 | 900 | #7.0
000
000 | 6-509E-01 | 2:040E-01 | 1-928E
2-175E
600 | 4
6.70
11.00
11.00
000 | 244
244
244
244 | | 2566 | 000
000 | 000
000
 | 1:780E-01
3:977E-01 | 4236 | 2-2-2-2-2-2-2-2-2-2-2-2-2-2-2-2-2-2-2- | 449
0413
0413
0413
0413
0413
0413
0413
0413 | | | 19019
FFF | 900
900 | 400 | 9-921E 88 | 3.523E 00 | | 450
24
24 | 00
00
00
00 | | 4010 | 000 | | 000 | 000 | 000 | | 990 | | 2777
1-27
1-27 | 000 | 4414
000 | 000 | 000 | 000 | 000 | 000 | | 2777
000
0-17 | 000 | 000
000 | 1845-03
5975-03
4765-01 | 2:11:E-01 | 3-3246-61 | | 2126-06 | | 6145A1 | 900 | 000 | 3-077E-01
7-260E-01 | 1:700E-01 | 8-804E-61 | 200
200
200
200
200
200
200
200
200
200 | 41/0
61/0
61/0
51/0
51/0
1 | | 2222 | 000 | 600
000 | 2.911.
9314.
9314.
600 | 00- | 2-12-6 | 5-0-12-0-12-0-12-0-12-0-12-0-12-0-12-0-1 | 000 | | 22.2 | 900
900
1 | 000
000 | 900 | 000 | 000 | 000 | 000 | | 000
000 | 600
600 | 000
000 | 000 | 900
900 | 000 | 900 | 000 | | 256 | 00
00
00
00 | مر
00
00 | 0.0
4.180E-08 | | 0:0
1:10EE-C7 | 9-0-0-1 | 0-0
1-714E-11 | PENTH = PAY FERICE = 1200 TC 1300 HOURS ON A WEEKCAY | ECTEC AR I | |------------| | 900 | | -00 | | 000 | | 000 | | 2-6 | | | | | | | | 000 | | 000 | | 425 | PCNTH = PAY FERIOC = 1200 TG 1300 HOURS CN & WEEKDAY | سروسا لسنه | | | | | | | | | | | | | | |--|-------------|--|-------------------------|---------------------|-------------------------|---|---|--|------------------|-------------------|-------------------------------|--|--| | | 205 | | 900 | 999 | | 24.01
24.02
26.03
26.03
26.03
26.03
26.03 | 2000
2000
2000
2000
2000
2000 | -00
M | 900 | 1 | 600
600
7F | | 100
100
100
100
100
100
100
100
100 | | FEAN | TER) FT | 1.034 | | 000 | | 2001
2011
2011
2011
2011
2011
2011 | 1444
1444
1444
1444
1444
1444
1444
144 | | 1000 | 000 | 0-0
6-463E-0E | | 400
400
84
84
84
84
84
84
84
84
84
84
84
84
84 | | TEO ARITHMETIC | GRAMS/CL. P | 4-585E-51 | 000 | 000 | 0-0
0-0
6-755E-05 | 2-112E-C3
3-853E-C3
1-341E-C2 | | 0.00
0.00
0.00 | 900 | 000 | 0.0
2.946E-08
2.336E-03 | 4-386E-C3
1-539E-G2
4-650E-C2 | 0.00 TE-02 | | EXPECTED | TO THE CA | 100
100
100
100
100
100
100
100
100
100 | 000 | 000 | 0.0
0.0
5.145E-10 | 2.3176-04
1.2486-04
1.4816-04 | | 0
0
0
0
0
0
0
0
0
0 |
990 | | | 6.50
6.50
6.50
6.50
6.50
6.50
6.50
6.50 | 1 - 1 6 3 E - 0 2 0 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | | | 20 | 1.620E-01
2.465E-01
4.358E-01 | 000 | 000 | 0.0
0.0
1.649E-09 | 4.548EE-03 | 9000 | 02E-0 | 000 | 000 | 9.224E-05 | 1.465E-03
4.768E-03
1.878E-03 | 3-813E-02
1-404E-01 | | LECATION | ETEFS | 000
000 | 900
900 | 000 | 7.000
8.000 | 10.00 | 1112 | 800 | 000
000 | 000 | #000
0000 | 000 | 4810
600 | | RECEPTOR | KILCP | 2000 | | 000 | 900 | 000 | 900 | 000 | 900 | 000
000
000 | 191919 | 000 | 14444
000
000 | | 76.08
7.08
7.08
7.08
7.08
7.08
7.08
7.08
7 | | Chulch (| Mulul
Mulul
Mulul | 00001
444
040 | 614161
444
61481 | 0101W
444
ALM | 4 MIN ! | niuski
nimoni
galaid. | 616101
616101 | | 010101
0000
0000 | | 644
644
644 | PCNTH = PLY FERICC = 1:00 TO 1300 HOURS ON A WEEKDAY | | | | | | | ر سوادا پس اد | | | | | | - | |---|---|--|--|--|--|---|---------------------------|----------------------|------------------------------|--|--|---| |]
 1
 6
 6
 6
 6
 6
 6
 6 | 205 | 00 | 000 | 000 | 1.182E-07 | 7 - 1 2 1 5 1 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 | ; | 000 | 000 | 0.0
0.0
6.150E-05 | 14.
44.
44.
44.
68.
68.
68.
68.
68.
68. | 1-422E-04 | | FEAN | TER) PT | 90 | 000 | 900 | 4 • E67E • 03
5 • 645E • 02
1 • 045E • 02 | 200 | 000 | 300
000 | | | 6-1816-03
2-7866-02
7-4666-02 | 1.5416-01 | | 4 | GRAMS/CU. PE | 1 | 000 | 000 | 22.
24.
24.
24.
24.
24.
24.
24.
24.
24. | 84.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0 | 000 | 000 | 000 | 0.0
0.0
2.13EE-C3 | 2.1516-C3
8.8576-C3
2.3236-G3 | 4.936E-02 | | EXPECTE | 1 T T T T | 90 | 000 | 000 | 2-210E-04
2-740E-04
5-351E-04 | 447
647
647
647
647
647
647
647
647
647 | 000 | 000 | 000 | 0.0
0.0
2.343E-04 | 2.02EE-04
2.657E-03 | 5.762E-02 | | | CC | 00 | 000 | 000 | 6.851E-04
8.200E-04
1.632E-03 | 5-139E-03
1-844E-02
3-615E-02 | 000 | 990 | 000 | 0.0
0.0
6.953E-04 | 9.091E-04
4.638E-03
9.750E-03 | 2.025E-02 | | LCCATION | TEFSI | 90
90
(VIII) | 4#/#
000 | 0000 | 000 | 12.00
000
000
000 | 000 | 600
000 | 000 | 10.00
11.00 | 000 | 15.00 | | RECEPTOR | KILGYE | 00 | 000 | 222 | 000 | 000 | 2777
244
000
000 | 000
000 | 000
000 | 1417V
000 | 200
000 | 24.00 | | FECEFICE I | | 372 | (1)(1)(1) |
10.000
10.000
10.000
10.000
10.000
10.000
10.000
10.000
10.000
10.000
10.000
10.000
10.000
10.000
10.000
10.000
10.000
10.000
10.000
10.000
10.000
10.000
10.000
10.000
10.000
10.000
10.000
10.000
10.000
10.000
10.000
10.000
10.000
10.000
10.000
10.000
10.000
10.000
10.000
10.000
10.000
10.000
10.000
10.000
10.000
10.000
10.000
10.000
10.000
10.000
10.000
10.000
10.000
10.000
10.000
10.000
10.000
10.000
10.000
10.000
10.000
10.000
10.000
10.000
10.000
10.000
10.000
10.000
10.000
10.000
10.000
10.000
10.000
10.000
10.000
10.000
10.000
10.000
10.000
10.000
10.000
10.000
10.000
10.000
10.000
10.000
10.000
10.000
10.000
10.000
10.000
10.000
10.000
10.000
10.000
10.000
10.000
10.000
10.000
10.000
10.000
10.000
10.000
10.000
10.000
10.000
10.000
10.000
10.000
10.000
10.000
10.000
10.000
10.000
10.000
10.000
10.000
10.000
10.0000
10.000
10.000
10.000
10.000
10.000
10.000
10.000
10.000
10.0000
10.000
10.000
10.000
10.000
10.000
10.000
10.000
10.000
10.0000
10.000
10.000
10.000
10.000
10.000
10.000
10.000
10.000
10.0000
10.000
10.000
10.000
10.000
10.000
10.000
10.000
10.000
10.0000
10.000
10.000
10.000
10.000
10.000
10.000
10.000
10.000
10.0000
10.000
10.000
10.000
10.000
10.000
10.000
10.000
10.000
10.0000
10.000
10.000
10.000
10.000
10.000
10.000
10.000
10.000
10.0000
10.000
10.000
10.000
10.000
10.000
10.000
10.000
10.000
10.0000
10.000
10.000
10.000
10.000
10.000
10.000
10.000
10.000
10.0000
10.000
10.000
10.000
10.000
10.000
10.000
10.000
10.000
10.0000
10.000
10.000
10.000
10.000
10.000
10.000
10.000
10.000
10.0000
10.000
10.000
10.000
10.000
10.000
10.000
10.000
10.000
10.0000
10.000
10.000
10.000
10.000
10.000
10.000
10.000
10.000
10.0000
10.000
10.000
10.000
10.000
10.000
10.000
10.000
10.000
10.0000
10.000
10.000
10.000
10.000
10.000
10.000
10.000
10.000
10.0000
10.000
10.000
10.000
10.000
10.000
10.000
10.000
10.000
10.000
10.000
10.000
10.000
10.000
10.000
10.000
10.000
10.000
10.000
10.000
10.000
10.000
10.000
10.000
10.000
10.000
10.000
10.000
10.000
10.000
10.000
10.000
10.000
10.000
10.000
10.000
10.000 | 2000 | וטוטוט
משש
מעות | משש
משש
מומוחוח | 2000
2000
2000 | 1010101
1010101
101011 | 4810) | 2000
2000
2000
2000 | 004 | | | RECEPTOR LCCATION I EXPECTED ARITHMETIC | RECEFICE LCCATION I EXPECTED ARITHMETIC MEAN (KILCMETERS) T CC I FC PICAGGRAMS/CU. METER) PT I | KAILCPETERS) (KILCPETERS) (K | RECEFICE LCCATION EXPECTE LCCATION EXPECTE ARITHETIC VEAN | RECTECT LCC | ## FECFFICE LCAPION KILCFFIES V | RECEFICATION 222 | RECEPTOR LONG | | EXPERIENCE DO CO | EXPECTED NO. 000 000 000 000 000 000 000 000 000 0 | TATE OF THE PARTY | PENTE - PEY PERICE - 1200 TO 1300 HOURS ON A WEEKDAY | | | 99-02-77 | | | | 0-0 | CI-ERO | 4)(~8) | V0- | Dui- | KIWP- | 925
925 | | - | |--------------|---|-------------|-------|---|---|--|-------------------|------------------------------|------------------------------------|---|---|--|--|---------------------------| | | PECEPTCF | XXICP | 990 | 000 | 990
990 | 000 | 00 0 | 000 | 000 | 000 | 000 | 000 | 000 | 000
000 | | ECEFICA CONC | LCCATION | FTEFSI | 900 | 600
000 | 000
000
000 | 000 | 14414 | 000 | 2004
0000
0000 | 900 | 9000
0000 | 000 | 9000 | | | CENTRATICA C | | 8 | 000 | 232E-0 | 25.34
5.59
6.59
6.59
6.59
6.59
6.59
6.59
6.59 | 8487
8487
8487
8487
8487
8487
8487
8487 | 200 | 402E | 6 8 E - 0 | 040
040
040
040
000 | 8 | 273 | 258E 0 | 0.0
0.0
-3.750E-05 | | ATA FRCP TCT | EXPECTEC | I KCRU | 900 | | 600
600
600
600
600
600
600
600 | 3.576E 00
2.616E 00
1.625E 00 | 5.934E-01 | 0.0
0.0
0.0 | 1-6-941E-07
5-257E-03 | 2000
2000
2000
2000
2000
2000
2000
200 | 1 0 0 3 E 0 1 E 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 1.368E
000
0500
0500
0000 | 1-008E 00
5-2-00E 01 | 0.0
0.0
-6.578E-06 | | AL SCUFCE | EC ARITHETIC | GRAMS/CU. P | 000 | 1-641E-C#
1-691E-C#
6-915E-04 | 4M4
1 | 1 8 5 E C | | 1.732E-C1 | -3.005E-C7 | 955E | 3:443 20 | | 3:431:61 | 0.0
-2.835E-C6 | | | TEPS . | TER) FT | 900 | 24-2
64-2
74-2
74-2
74-2
74-2
74-2
74-2
74-2
7 | 22 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 | 823
600
623
600
600
600
600
600
600
600
600
600
60 | 947
947
990 | 00.0
00.0
00.0
00.0 | -10-0
-10-16-26-07
-10-16-07 | | | ###
###
###
###
###
###
###
###
| | 0.0
-1.055E-06 | | | 1
1
1
1
1
1
1
1
1
1
1
1
1 | 1 S02 | 1 000 | | 1 000
1 000
1 1 1 1 | 1.00-10-10-10-10-10-10-10-10-10-10-10-10-1 | Don | m00 | | | | 1.42
1.42
1.46
1.46
1.46
1.46
1.46
1.46
1.46
1.46 | 0.0
0.0
0.0
0.0
0.0
0.0 | 0.0
-0.0
-1.621E-06 | MCNTH = MEY FERICE = 1200 TC 1200 HOURS CN A WEEKDAY | | | | | | | | | | | | | | | | - | |---|--------------|----------------|---|--|--|-------------------------------|--------------------------
---|----------------------------------|--|--|---------------------------------------|---|---|-----------| | 1
1
1
1
1
1
1
1
1 | | sc2 | | 1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00 | 200
200
200
200
200
200
200
200
200
200 | 2532
2532
858E | 258E-0 | 4.65 LE - 0 1 - 0 2 2 1 - | 2-170E
2-170E
2-176E
00 | 400 | 27.00 | 1 (| 2000
2000
2000
2000
2000
2000
2000
200 | 25.5 | 3-3356 00 | | | FEAN | TER) FT | 105E-0 | 1 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 | 100 mm | | 755E-0 | 1 CONTO | 2000
1000
1000
1000 | 200
200
200
200
200
200
200
200
200
200 | 200
200
200
200
200
200
200
200
200
200 | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | -4-576E-05 | 174.4
174.8
170.1
170.1 | 2.614E 00 | | AL SCLECES | C ARITEMETIC | GRAMS/CL. FE | -036E-C | 1 200
1 200
1 200
1 200
1 200 | 3-912E CC 1 | 9946 | 273E-C | 240E-0 | | 203 | | O EE O | 1-18:E-04-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1- | 1 40.0
1 11.00
1 11.00
1 11.00 | 32 | | TA FRCH TCT | EXPECTED | 1 | 25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00 | 900 | 24.5
24.5
24.5
Emm | 150E 0 | 0
266E-0 | 5-885E-01
3-527E-01
1-940E-01 | 2.655E 01
2.775E 01 | 200
200
200
200
200
200
200
200
200
200 | 722 | 00 52 E Q | | 480E 0 | 3.2546 81 | | CENTRATICA CA | | 00 | 364E-0 | 1.146E 02
1.050E 02
9.175E 01 | 510 | .218E 0
.086E 0
.824E 0 | 0.0
0.0
-3.002E-04 | 3-355E 00
2-011E 00
1-106E 00 | 000 | 40- | 23E
68E
68E
000 | 0.0
0.0 | -1.562E-03
1.540E 01
1.016E 01 | 1-406E 02
1-607E 02
1-755E 02 | 1.8446 02 | | ECEFTCP CCN | LCCFTION | ETEFS) | 000 | 7.00
6.00
7.00 | 11:00 | 14.00 | 1.00 | 5,413 | 000 | 10.00 | 12.00 | 16.00 | 4 9 4 9 6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 000 | 900 | | | RECEFTCE | KILCP | 00 | | | | 000
000 | 000 | 000 | 000 | 000
000 | 000 | 444
900 | 444
000 | 90 | | beds | NCFETCE I | of pad justice | ener
ww | | 444) | 444
ALA | 44141
A0141 | ואושו | 10000
10000 | M. 20 | 444 | 48.0 | -ws | 047 | | PENTH = PEV FEPICE = 1200 TC 1300 HOURS GN & MEEKCAY | | | ECEFTOR CONC | ENTRATION CAT | TA FROM TCT | L SCURCE | | | |----------------------------|--------------------|--------------|--------------------------------------|-------------------------------------|---|---
---| | FECEFICA
NUMBER
PREF | RECEPTUR | LCCATION | | EXPECTED | ARI | PEAN | | | | XX 110 P | TEFS) | נ | T T T T | GRAMS/CL. PE | ETEP)
FT | 203 | | 3 | 4.00 | 10.00 | 6-165E 01 | 1.088E 01 | 446E C | 1 (| | | | 000 | 000
000 | 464
mmm | 55.00
54.45
66.00
600 | 23.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00 | 6-1116-01
4-5336-01 | 6.026E-61 | | - 60 W | 44m
000 | 4410 | 2.805E 01
2.461E 01 | 945E | 000
000
000
000
000
000
000
000
000
00 | 4-727E-01 | | | (AU)4. | 000
000
4 | 000
000 | 1.886E 01
-4.432E-03
5.082E 01 | 3.365E 66
-7.775E-04 | 3.9566
3.9566
3.8566
6.00 | | -1-0-1-0-1-0-1-0-1-0-1-0-1-0-1-0-1-0-1- | | WE WE | 000
000
000 | 4114
000 | -3728E 0 | 542
542
543
666
666 | 800
200
2130
mmm | 04.0
02.0
04.0
04.0
000 | 21-61-5
1-3-7-61-5
1-3-7-61-6
00-6-1-6-6-6-6-6-6-6-6-6-6-6-6-6-6-6-6-6 | | 8000 | 900
900 | 000
000 | 624E
802E
163E
0 | 840
586
5385
600 | 4-00
mmm | 2.53
8.23
8.23
8.23
6.00
6.00
6.00
6.00
6.00
6.00
6.00
6.0 | | | -255
555 | 900
900 | 000 | 7.956 01
7.956 01
4.666 01 | 1.037E 01
8.155E 01 | 5-25aE 60
3-375E 60 | 4774
727
727
727
727
727 | | | ውው
ተጠብ | 200
200
200 | 000 | 3.746 01
3.746 01 | 6440
6440
6610
6010
600 | 2.752E
2.732E
2.736E
600 | 6.1404E-01 | | | ~@v | 900 | 000 | 90 | 448E-0 | 251E-C | 43E-0 | 000
000
000
000 | | 0000 | 999
999 | 000 | 1-212E 02
9-910E 01
1-192E 02 | 2-127E 01
1-738E 01
2-059E 01 | MUM
MUM
MUM | 20081
2000
40101
2000 | | | 000 | 000
000
•••• | 000 | 1.360E 02
1.335E 02
1.513E 02 | 2.358E 01
2.671E 01 | 9.891E CO
1.055E CO | 4104
4104
mmm | 2.524E
2.524E
2.524E
2.524E | | 1000
000
000 | 999 | 000 | 1.034E 02
1.316E 02
1.457E 02 | | 7-46CE
9-46CE
1-05CE
C1 | 2.25
2.25
2.25
2.25
2.25
3.25
3.25
3.25 | | | 50-4
0-4-4
-4-4 | 999
999 | 000 | 6-257E 01
4-954E 01
7-100E 01 | 1.054E 01
8.656E 00
1.251E 01 | 26.25 | 2000
2000
2000 | 440
640
600
600 | | [] | | | | | | | | MCNTH = PAY PERICE = 1200 TO 1200 HOURS ON A WEEKDAY | 1 | | | 655E 0 | \$ 36.26.00
\$ 05.76.00
6 705.600 | 2012
0012
0010
0010 | 000 | -0066
-7266
0 -960 | 4-022E 00
2-285E 00
4-7-E 00 | 000
000 | 1-17E
4-913E
00 | -471E
-960E
-638E | 123E | 269E
200E | 6.7116-04
6.656-004 | 1.1916 01 | |---|---------------------------|---------------|--------------------------------|---|--|----------------------------|---------------------------|--------------------------------------|--|---|--|--|--|--|-------------| | | FEAN | TER! FT | 257E 0 | 346E 0 | 250
250
250
250
250
250
250
250
250
250 | 600
600
600
600 | \$ 22E
211E
526E | 04.0
04.0
04.8
04.8
04.8 | 22,25 | 000
000
000 | 8.00
8.00
8.00
9.00
9.00
9.00
9.00 | 2017
2017
2017
2018
2018 | 144
144
164
164
164
164
164
164
164
164 | -2-
-2-
-2 | 9.166E CO | | SCUFCE! | D ARITHMETIC | GGRAYS/CL. PI | 4.474E (0
0.0
-1.11(F-C3 | 000 | 2000 | 26.44
26.44
20.00 | 400 | | 1,000 | 102E | -431E
-275E | 400
400
400
400
400
400
400
400
400
400 | 262
262
863
863
866
866
866
866
866
866
866
866 |
10-494
10-175
10-175
10-175
10-175
10-175
10-175
10-175
10-175
10-175
10-175
10-175
10-175
10-175
10-175
10-175
10-175
10-175
10-175
10-175
10-175
10-175
10-175
10-175
10-175
10-175
10-175
10-175
10-175
10-175
10-175
10-175
10-175
10-175
10-175
10-175
10-175
10-175
10-175
10-175
10-175
10-175
10-175
10-175
10-175
10-175
10-175
10-175
10-175
10-175
10-175
10-175
10-175
10-175
10-175
10-175
10-175
10-175
10-175
10-175
10-175
10-175
10-175
10-175
10-175
10-175
10-175
10-175
10-175
10-175
10-175
10-175
10-175
10-175
10-175
10-175
10-175
10-175
10-175
10-175
10-175
10-175
10-175
10-175
10-175
10-175
10-175
10-175
10-175
10-175
10-175
10-175
10-175
10-175
10-175
10-175
10-175
10-175
10-175
10-175
10-175
10-175
10-175
10-175
10-175
10-175
10-175
10-175
10-175
10-175
10-175
10-175
10-175
10-175
10-175
10-175
10-175
10-175
10-175
10-175
10-175
10-175
10-175
10-175
10-175
10-175
10-175
10-175
10-175
10-175
10-175
10-175
10-175
10-175
10-175
10-175
10-175
10-175
10-175
10-175
10-175
10-175
10-175
10-175
10-175
10-175
10-175
10-175
10-175
10-175
10-175
10-175
10-175
10-175
10-175
10-175
10-175
10-175
10-175
10-175
10-175
10-175
10-175
10-175
10-175
10-175
10-175
10-175
10-175
10-175
10-175
10-175
10-175
10-175
10-175
10-175
10-175
10-175
10-175
10-175
10-175
10-175
10-175
10-175
10-175
10-175
10-175
10-175
10-175
10-175
10-175
10-175
10-175
10-175
10-175
10-175
10-175
10-175
10-175
10-175
10-175
10-175
10-175
10-175
10-175
10-175
10-175
10-175
10-175
10-175
10-175
10-175
10-175
10-175
10-175
10-175
10-175
10-175
10-175
10-175
10-175
10-175
10-175
10-175
10-175
10-175
10-175
10-175
10-175
10-175
10-175
10-175
10-175
10-175
10-175
10-175
10-175
10-175
10-175
10-175
10-175
10-175
10-175
10-175
10-175
10-175
10-175
10-175
10-175
10-175
10-175
10-175
10-175
10-175
10-175
10-175
10-175
10-175
10-175
10-175
10-175
10-175
10-175
10-175
10-175
10-175
10-175
10-175
10-175
10-175
10-175
10-175
10-175
10-175
10-175
10-175
10-175
10-175
10-175
10-175
10-175
10-175
10-175
10-175
10-175
10-175
10-175
10-175
10-175
10-175
10-175
10-175
10 | 2.035E C1 | | TA FROM TCT | EXPECTED | MICE | 00 K | 3.758E 0
3.758E 0 | 100 832E 01 | .052E
974E
0037E | 250E
355E
422E
0 | 8000 | 6404
640
640
640 | - 862E
- 818E
- 124E
- 0 | 5.54.2
5.56.8
5.50.0
5.50.0
5.50.0
5.50.0
5.50.0
5.50.0
5.50.0
5.50.0
5.50.0
5.50.0
5.50.0
5.50.0
5.50.0
5.50.0
5.50.0
5.50.0
5.50.0
5.50.0
5.50.0
5.50.0
5.50.0
5.50.0
5.50.0
5.50.0
5.50.0
5.50.0
5.50.0
5.50.0
5.50.0
5.50.0
5.50.0
5.50.0
5.50.0
5.50.0
5.50.0
5.50.0
5.50.0
5.50.0
5.50.0
5.50.0
5.50.0
5.50.0
5.50.0
5.50.0
5.50.0
5.50.0
5.50.0
5.50.0
5.50.0
5.50.0
5.50.0
5.50.0
5.50.0
5.50.0
5.50.0
5.50.0
5.50.0
5.50.0
5.50.0
5.50.0
5.50.0
5.50.0
5.50.0
5.50.0
5.50.0
5.50.0
5.50.0
5.50.0
5.50.0
5.50.0
5.50.0
5.50.0
5.50.0
5.50.0
5.50.0
5.50.0
5.50.0
5.50.0
5.50.0
5.50.0
5.50.0
5.50.0
5.50.0
5.50.0
5.50.0
5.50.0
5.50.0
5.50.0
5.50.0
5.50.0
5.50.0
5.50.0
5.50.0
5.50.0
5.50.0
5.50.0
5.50.0
5.50.0
5.50.0
5.50.0
5.50.0
5.50.0
5.50.0
5.50.0
5.50.0
5.50.0
5.50.0
5.50.0
5.50.0
5.50.0
5.50.0
5.50.0
5.50.0
5.50.0
5.50.0
5.50.0
5.50.0
5.50.0
5.50.0
5.50.0
5.50.0
5.50.0
5.50.0
5.50.0
5.50.0
5.50.0
5.50.0
5.50.0
5.50.0
5.50.0
5.50.0
5.50.0
5.50.0
5.50.0
5.50.0
5.50.0
5.50.0
5.50.0
5.50.0
5.50.0
5.50.0
5.50.0
5.50.0
5.50.0
5.50.0
5.50.0
5.50.0
5.50.0
5.50.0
5.50.0
5.50.0
5.50.0
5.50.0
5.50.0
5.50.0
5.50.0
5.50.0
5.50.0
5.50.0
5.50.0
5.50.0
5.50.0
5.50.0
5.50.0
5.50.0
5.50.0
5.50.0
5.50.0
5.50.0
5.50.0
5.50.0
5.50.0
5.50.0
5.50.0
5.50.0
5.50.0
5.50.0
5.50.0
5.50.0
5.50.0
5.50.0
5.50.0
5.50.0
5.50.0
5.50.0
5.50.0
5.50.0
5.50.0
5.50.0
5.50.0
5.50.0
5.50.0
5.50.0
5.50.0
5.50.0
5.50.0
5.50.0
5.50.0
5.50.0
5.50.0
5.50.0
5.50.0
5.50.0
5.50.0
5.50.0
5.50.0
5.50.0
5.50.0
5.50.0
5.50.0
5.50.0
5.50.0
5.50.0
5.50.0
5.50.0
5.50.0
5.50.0
5.50.0
5.50.0
5.50.0
5.50.0
5.50.0
5.50.0
5.50.0
5.50.0
5.50.0
5.50.0
5.50.0
5.50.0
5.50.0
5.50.0
5.50.0
5.50.0
5.50.0
5.50.0
5.50.0
5.50.0
5.50.0
5.50.0
5.50.0
5.50.0
5.50.0
5.50.0
5.50.0
5.50.0
5.50.0
5.50.0
5.50.0
5.50.0
5.50.0
5.50.0
5.50.0
5.50.0
5.50.0
5.50.0
5.50.0
5.50.0
5.50.0
5.50.0
5.50.0
5.50.0
5.50.0
5.50.0
5.50.0
5.50.0
5.50.0
5.50.0
5.50.0
5.50.0
5.50.0
5.50.0
5.50.0
5.50.0
5.50.0
5.50.0
5.50.0
5.50.0
5.50.0
5.00.0
5.00.0
5.00.0
5.00.0
5.00.0
5.00.0
5.00.0
5.00.0
5.00.0
5.00.0
5.00.0
5.00.0
5. | 248E 0 | 247
000
000
000 | 273E-0
723E-0
516E-0 | 5.123E 01 | | ENTRATICA CA | | נט | 045E 0 | 165E
104E
004E | 1785E
102E
005E | 163E 0
013E 0
548E 0 | 890E
376E
0 | 1.027E 02
1.027E 02
1.029E 02 | 643
643
645
645
645
645
645
645
645
645
645
645 | 925
935
900
900
900
900
900
900
900
900
900
90 | 713E 0
571E 0
345E 0 | 000 | 1227
7025
7025
7025
7025
7025
7025
7025
7 | -7-255E-03
2-552E-03
2-552E-03 | 2.558E 02 I | | ECEPTOR CONC | LCCATION | TEFS) | 000 | 000 | 000 | 6.00
00.00
00.00 | 000 | 4410
000
000 | 000
000 | 48.40
000 | 2 000
000
000 | 000 | 000 | 000 | 3.00 | | | RECEFTCF | KILCPE | 000 | 000 | 000 | 000 | 000 | 000 | 000 | 000 | 990 | 900
900 | 000
000 | 000
000 | 2.00 | | | FECE
FEE
FEE
FEE | | | | 115 | 1222 | 459
1754
1754 | 126 | | | | 2044
004 | 444 | | 1 148 | PCNTH = P.EY PERICC = 1200 TC 1300 HOURS ON A WEEKCAY | | | EFTCR | CCACENTRATICA C | ATA FROM TCT. | AL SCLECE | | †
†
†
!
! | |---|------------|-------------------|--|--|--------------------------------------|---
---| | FEC 64 1 | RECEPTCA | LCCATION | | EXPECTED | ARI | ************************************** | •
•
•
• | | | KILOPE | TEFS) | 35 | E DE | GRAMS/CL. P | 16P) FT | 202 | | 480 | 000 | 4.iv | 2.085E 02 | 1 59E 0 | 583 | 1636 | 1576 88 | | | 000
000 | 000
000
vra | 700
700
700
700
700
700
700 | 24.0
24.0
24.0
26.0
26.0
26.0
26.0
26.0
26.0
26.0
26 | 200
000 | 1000 | 279 | | denn
Anna
Anna
Anna
Anna
Anna
Anna
Anna
A | 000 | 10:00 | 1306 | 3-8456 | 7346 | 12120 | 9000
9000
9000 | | | 000 | 000 | 000
000
000
000 | 945
645
645
645
645
645 | 837E
234E
116E | 000 | 757E | | 0 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - | 000
000 | 1.00 | 2000
2000
2000
2000 | -6.556E-01 | 3136 | 4112 | 647E | | <u> </u> | 000 | 000 | 300
300
300
300
300
300
300
300
300
300 | 000
000 | 000 | 6.14
2355
2355
2355
2355
2355
2355
2355
235 | | | 165 | 900 | 900 | 1-2-207E 02
1-1-21E 02 | 6-068E 01
2-150E 01
1-534E 01 | 1-0W | 200 | 4.00
6.00
6.00
6.00
6.00
6.00
6.00
6.00 | | 171 | 990 | 900
000
000 | 9-986E 01 | 23.33.6E
23.33.6E
23.36E
23.36E
23.36E | 1-225E
6-122E
7-14EE
600 | 244
244
240
240
240 | 4416
4416
972
972
900
900
900 | | 172 | 900 | 1 2 000 | 3172
3172
605
605
605
605
605
605
605
605
605
605 | # 100
100
100
100 | 004
044 | 446
446
4424
4424
4424
4444 | 4.44
0.00
0.00
0.00 | | 115 | 000 | | 405E
326E
067E | 6-16-16-01
6-004E-01 | 4004 | 425
425
600
600 | 000
000
000
000 | | 1126 | 990 | 0000 | 969E | 47.4
04.4
000 | 5954
6354
6354
6354
6354 | 24.2
24.2
26.2
26.2
26.2
26.2
26.2
26.2 | | | | 000 | 44/4
000 | 5.989E 02
1.611E 02 | 1.226E 02
3.335E 02 | 5-184E CI
5-462E GI | 4.007E 01 | 4.7.1
4.7.2
4.4.2
1.4.2
1.4.2
1.4.2
1.4.2
1.4.2
1.4.2
1.4.2
1.4.2
1.4.2
1.4.2
1.4.2
1.4.2
1.4.2
1.4.2
1.4.2
1.4.2
1.4.2
1.4.2
1.4.2
1.4.2
1.4.2
1.4.2
1.4.2
1.4.2
1.4.2
1.4.2
1.4.2
1.4.2
1.4.2
1.4.2
1.4.2
1.4.2
1.4.2
1.4.2
1.4.2
1.4.2
1.4.2
1.4.2
1.4.2
1.4.2
1.4.2
1.4.2
1.4.2
1.4.2
1.4.2
1.4.2
1.4.2
1.4.2
1.4.2
1.4.2
1.4.2
1.4.2
1.4.2
1.4.2
1.4.2
1.4.2
1.4.2
1.4.2
1.4.2
1.4.2
1.4.2
1.4.2
1.4.2
1.4.2
1.4.2
1.4.2
1.4.2
1.4.2
1.4.2
1.4.2
1.4.2
1.4.2
1.4.2
1.4.2
1.4.2
1.4.2
1.4.2
1.4.2
1.4.2
1.4.2
1.4.2
1.4.2
1.4.2
1.4.2
1.4.2
1.4.2
1.4.2
1.4.2
1.4.2
1.4.2
1.4.2
1.4.2
1.4.2
1.4.2
1.4.2
1.4.2
1.4.2
1.4.2
1.4.2
1.4.2
1.4.2
1.4.2
1.4.2
1.4.2
1.4.2
1.4.2
1.4.2
1.4.2
1.4.2
1.4.2
1.4.2
1.4.2
1.4.2
1.4.2
1.4.2
1.4.2
1.4.2
1.4.2
1.4.2
1.4.2
1.4.2
1.4.2
1.4.2
1.4.2
1.4.2
1.4.2
1.4.2
1.4.2
1.4.2
1.4.2
1.4.2
1.4.2
1.4.2
1.4.2
1.4.2
1.4.2
1.4.2
1.4.2
1.4.2
1.4.2
1.4.2
1.4.2
1.4.2
1.4.2
1.4.2
1.4.2
1.4.2
1.4.2
1.4.2
1.4.2
1.4.2
1.4.2
1.4.2
1.4.2
1.4.2
1.4.2
1.4.2
1.4.2
1.4.2
1.4.2
1.4.2
1.4.2
1.4.2
1.4.2
1.4.2
1.4.2
1.4.2
1.4.2
1.4.2
1.4.2
1.4.2
1.4.2
1.4.2
1.4.2
1.4.2
1.4.2
1.4.2
1.4.2
1.4.2
1.4.2
1.4.2
1.4.2
1.4.2
1.4.2
1.4.2
1.4.2
1.4.2
1.4.2
1.4.2
1.4.2
1.4.2
1.4.2
1.4.2
1.4.2
1.4.2
1.4.2
1.4.2
1.4.2
1.4.2
1.4.2
1.4.2
1.4.2
1.4.2
1.4.2
1.4.2
1.4.2
1.4.2
1.4.2
1.4.2
1.4.2
1.4.2
1.4.2
1.4.2
1.4.2
1.4.2
1.4.2
1.4.2
1.4.2
1.4.2
1.4.2
1.4.2
1.4.2
1.4.2
1.4.2
1.4.2
1.4.2
1.4.2
1.4.2
1.4.2
1.4.2
1.4.2
1.4.2
1.4.2
1.4.2
1.4.2
1.4.2
1.4.2
1.4.2
1.4.2
1.4.2
1.4.2
1.4.2
1.4.2
1.4.2
1.4.2
1.4.2
1.4.2
1.4.2
1.4.2
1.4.2
1.4.2
1.4.2
1.4.2
1.4.2
1.4.2
1.4.2
1.4.2
1.4.2
1.4.2
1.4.2
1.4.2
1.4.2
1.4.2
1.4.2
1.4.2
1.4.2
1.4.2
1.4.2
1.4.2
1.4.2
1.4.2
1.4.2
1.4.2
1.4.2
1.4.2
1.4.2
1.4.2
1.4.2
1.4.2
1.4.2
1.4.2
1.4.2
1.4.2
1.4.2
1.4.2
1.4.2
1.4.2
1.4.2
1.4.2
1.4.2
1.4.2
1.4.2
1.4.2
1.4.2
1.4.2
1.4.2
1.4.2
1.4.2
1.4.2
1.4.2
1.4.2
1.4.2
1.4.2
1.4.2
1.4.2
1.4.2
1.4.2
1.4.2
1.4.2
1.4.2
1.4.2
1.4.2
1.4.2
1.4.2
1.4.2
1.4.2
1.4.2
1.4.2
1.4.2
1.4.2
1.4.2
1.4.2
1.4.2
1.4.2
1.4.2
1.4.2
1.4.2
1.4.2
1.4.2
1.4.2
1.4.2
1.4.2
1.4.2
1.4.2
1.4.2
1.4.2
1.4.2
1.4.2 | | 4.8. | 00 | 000 | 9-773E 01
8-129E 01 | | 2.272E (1 | 7-897E 99 | 3.2556 | MENTH - MAY FERICE - 1200 TG 1300 HOURS ON A WEEKDAY | 7.07
7.07
7.07
7.07
7.07 | RECEPTOR | LECATION | | EXPECT | EC ARITHETIC | E P P | | |---|----------|----------------------|--|---|--|--|---| | | KILCPE | ETEFS) | 5 | MICH | GRAMS/CL. P | TER) PT | | | 186 | 11.00 | 00*5 | 1.865E 02 | 5.526E C1 | 1.354E C1 | 7.83EE 01 | 4.401E 00 | | - 95
98
100
100
100
100
100
100
100
100
100
10 | | 10000 | 1-183E G2
5-338E 01
2-968E 02 | | | 7426
5666
0156 | 13.518E 000 | | DH261 | 000 | 41441
000 | 000 | 8 5 4 5 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 | 63.3
83.5
90.6
60.6
60.6
60.6
60.6
60.6
60.6
60.6 | -44
-45
-45
-45
-45
-45
-45
-45
-45
-45 | 4424
4224
6966 | | 11000 | 000 | 000 | 1000 | 829 | | 446
604
604
600
600
600
600
600
600
600 | 2254
2274
2274
2274 | | 200
200
200
200
200
200
200
200
200
200 | 000 | 000 | 530E
070E
075E
0 |
200
200
200
200
200 | 1111
5626
8226
0 | 24626
24626
24626
24626
24626 | 283E 0
411E 0 | | 200
200
201 | 000 | 000-4
 | 1-324E 02
9-528E 01
8-823E 01 | 2.277E 01
2.277E 01
2.282E 01 | N84 | 441
641
641
641 | -06 EE 0
-192E 0 | | 202 | 000 | 10.00 | 2027E | | 4420
024E | 1 - 5 5 5 E 0 1 2 - 5 7 3 E 0 1 | 42.6 | | 200
200
200
200
200
200
200
200
200
200 | 200 | 12.000 | I PLINO | 333E | 72.20
6.00
7.2.20
6.00
6.00
6.00
6.00
7.2.20
6.00
7.2.20
6.00
7.2.20
7.2.20
7.2.20
7.2.20
7.2.20
7.2.20
7.2.20
7.2.20
7.2.20
7.2.20
7.2.20
7.2.20
7.2.20
7.2.20
7.2.20
7.2.20
7.2.20
7.2.20
7.2.20
7.2.20
7.2.20
7.2.20
7.2.20
7.2.20
7.2.20
7.2.20
7.2.20
7.20
7 | 1000 | 7.000
7.000
7.000 | | 206
205
210 | 000 | 1.00 | - 58
- 79
- 85
- 85
- 85
- 90
- 90
- 90
- 90
- 90
- 90
- 90
- 90 | 7.52E
242E
245E | 6564
4064
1016
1016 | 542E-421E- | 1 - 295E - 01 - 295E - 02 - 02 - 02 - 02 - 02 - 02 - 02 - 0 | | 212 | 000 | 2.00
9.00
4.00 | 244
744
747
747
747
747 | 1.352E 01
1.841E 01
2.584E 01 | | 500
500
500
500
500
500
500
500
500
500 | 2.424
2.624
3.655
6.00
5.00
5.00
5.00
5.00
5.00
5.00 | | 2712 | | 000 | 2003E | | 8414
6414
6414
600 | 3441
3441
3461
3611
3611 | 900
900 | | 217
218
215 | 900 | 6-00
5-00
0-04 | 7.535E 01
9.838E 01
1.295E 02 | 1.024E 01
2.611E 01
3.585E 01 | 7-376E CO
1-195E CO | 5452
5452
9466
9466
9466 | 6000
6000
6000
6000 | | 220 | 000 | 32.000 | 1.794E 02
1.953E 02
2.781E 02 | | 3600 | 23 CE C
6066 C
5266 0 | | | | | | | | | | | MCNTH - PAY PERICE - 1200 TG 1300 HOURS ON A WEEKDAY | , — | | ~ | | | | | | | - | | | - | - | | _ | |---------------------------------|---|-------------|---|--|----------------------------------|--|-----------------------------|--|---|--|--|--|------------------------|---|-----------| | | 0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0 | 205 | 1004 | 5.44
5.44
6.44
6.44
6.44
6.44
6.44
6.44 | 6913E
935E
935E | 426 | 1000 | 2000
6000
6000
6000 | | 2000
1000
1000
1000
1000 | 2014
0114
0114 | 242 | 247.
447.
mmm | 0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.0 | 6.1566-04 | | ;
;
;
;
;
;
; | FEAN | TER) ET | 22.0
2.1.1
2.1.1
2.1.1
2.1.1
2.1.1
2.1.1
2.1.1
2.1.1
2.1.1
2.1.1
2.1.1
2.1.1
2.1.1
3.1.1
3.1.1
3.1.1
3.1.1
3.1.1
3.1.1
3.1.1
3.1.1
3.1.1
3.1.1
3.1.1
3.1.1
3.1.1
3.1.1
3.1.1
3.1.1
3.1.1
3.1.1
3.1.1
3.1.1
3.1.1
3.1.1
3.1.1
3.1.1
3.1.1
3.1.1
3.1.1
3.1.1
3.1.1
3.1.1
3.1.1
3.1.1
3.1.1
3.1.1
3.1.1
3.1.1
3.1.1
3.1.1
3.1.1
3.1.1
3.1.1
3.1.1
3.1.1
3.1.1
3.1.1
3.1.1
3.1.1
3.1.1
3.1.1
3.1.1
3.1.1
3.1.1
3.1.1
3.1.1
3.1.1
3.1.1
3.1.1
3.1.1
3.1.1
3.1.1
3.1.1
3.1.1
3.1.1
3.1.1
3.1.1
3.1.1
3.1.1
3.1.1
3.1.1
3.1.1
3.1.1
3.1.1
3.1.1
3.1.1
3.1.1
3.1.1
3.1.1
3.1.1
3.1.1
3.1.1
3.1.1
3.1.1
3.1.1
3.1.1
3.1.1
3.1.1
3.1.1
3.1.1
3.1.1
3.1.1
3.1.1
3.1.1
3.1.1
3.1.1
3.1.1
3.1.1
3.1.1
3.1.1
3.1.1
3.1.1
3.1.1
3.1.1
3.1.1
3.1.1
3.1.1
3.1.1
3.1.1
3.1.1
3.1.1
3.1.1
3.1.1
3.1.1
3.1.1
3.1.1
3.1.1
3.1.1
3.1.1
3.1.1
3.1.1
3.1.1
3.1.1
3.1.1
3.1.1
3.1.1
3.1.1
3.1.1
3.1.1
3.1.1
3.1.1
3.1.1
3.1.1
3.1.1
3.1.1
3.1.1
3.1.1
3.1.1
3.1.1
3.1.1
3.1.1
3.1.1
3.1.1
3.1.1
3.1.1
3.1.1
3.1.1
3.1.1
3.1.1
3.1.1
3.1.1
3.1.1
3.1.1
3.1.1
3.1.1
3.1.1
3.1.1
3.1.1
3.1.1
3.1.1
3.1.1
3.1.1
3.1.1
3.1.1
3.1.1
3.1.1
3.1.1
3.1.1
3.1.1
3.1.1
3.1.1
3.1.1
3.1.1
3.1.1
3.1.1
3.1.1
3.1.1
3.1.1
3.1.1
3.1.1
3.1.1
3.1.1
3.1.1
3.1.1
3.1.1
3.1.1
3.1.1
3.1.1
3.1.1
3.1.1
3.1.1
3.1.1
3.1.1
3.1.1
3.1.1
3.1.1
3.1.1
3.1.1
3.1.1
3.1.1
3.1.1
3.1.1
3.1.1
3.1.1
3.1.1
3.1.1
3.1.1
3.1.1
3.1.1
3.1.1
3.1.1
3.1.1
3.1.1
3.1.1
3.1.1
3.1.1
3.1.1
3.1.1
3.1.1
3.1.1
3.1.1
3.1.1
3.1.1
3.1.1
3.1.1
3.1.1
3.1.1
3.1.1
3.1.1
3.1.1
3.1.1
3.1.1
3.1.1
3.1.1
3.1.1
3.1.1
3.1.1
3.1.1
3.1.1
3.1.1
3.1.1
3.1.1
3.1.1
3.1.1
3.1.1
3.1.1
3.1.1
3.1.1
3.1.1
3.1.1
3.1.1
3.1.1
3.1.1
3.1.1
3.1.1
3.1.1
3.1.1
3.1.1
3.1.1
3.1.1
3.1.1
3.1.1
3.1.1
3.1.1
3.1.1
3.1.1
3.1.1
3.1.1
3.1.1
3.1.1
3.1.1
3.1.1
3.1.1
3.1.1
3.1.1
3.1.1
3.1.1
3.1.1
3.1.1
3.1.1
3.1.1
3.1.1
3.1.1
3.1.1
3.1.1
3.1.1
3.1.1
3.1.1
3.1.1
3.1.1
3.1.1
3.1.1
3.1.1
3.1.1
3.1.1
3.1.1
3.1.1
3.1.1
3.1.1
3.1.1
3.1.1
3.1.1
3.1.1
3.1.1
3.1.1
3.1.1
3.1.1
3.1.1
3.1.1
3.1.1
3.1.1
3.1.1
3.1.1
3.1.1
3.1.1
3.1.1
3.1.1
3.1.1
3.1.1
3.1.1
3.1.1
3.1.1
3.1.1
3.1.1
3.1.1
3.1.1
3.1.1
3.1.1
3.1.1
3 | | 1000
1000
1000
1000 | 240 | 1616
4526
6246
000 | 044
mmm | 2000
2000
2000
2000 | 24.55
24.56
24.66
24.66
24.66
24.66 | 4.00
4.04
4.04
6.00
6.00
6.00
6.00 | 24.0
24.0
24.0
20.0
20.0
20.0
20.0
20.0 | 2000
0000 | - | 5.002E-04 | | 1 SCUPCES | C ARITHETIC | GRAMS/CL. P | 2-59!E CI | 7216-C | 6.5676 60 | 3546 | 000 | 12 EEE | | 1000
11111100
11111100 | 446
000 | 2000
8800
8140 | | 804
804
800
800
900
900 | 1.707E-C3 | | TA FROM TOTA | EXPECTED | STATE OF | 5-856E 01 | | DI-IN | 543
522
527
6 | -50 | 2000
2000
1000 | 9000 | N40 |
NEO | 855
855
855
865
865
865
865
865
865
865 | 3.450E 01 | -00
0mv | 4.058E-02 | | ENTRATICK DA | | 5 | 2-9356
2-5376
1-1576
1-1576
1-1576
1-1576
1-1576
1-1576
1-1576
1-1576
1-1576
1-1576
1-1576
1-1576
1-1576
1-1576
1-1576
1-1576
1-1576
1-1576
1-1576
1-1576
1-1576
1-1576
1-1576
1-1576
1-1576
1-1576
1-1576
1-1576
1-1576
1-1576
1-1576
1-1576
1-1576
1-1576
1-1576
1-1576
1-1576
1-1576
1-1576
1-1576
1-1576
1-1576
1-1576
1-1576
1-1576
1-1576
1-1576
1-1576
1-1576
1-1576
1-1576
1-1576
1-1576
1-1576
1-1576
1-1576
1-1576
1-1576
1-1576
1-1576
1-1576
1-1576
1-1576
1-1576
1-1576
1-1576
1-1576
1-1576
1-1576
1-1576
1-1576
1-1576
1-1576
1-1576
1-1576
1-1576
1-1576
1-1576
1-1576
1-1576
1-1576
1-1576
1-1576
1-1576
1-1576
1-1576
1-1576
1-1576
1-1576
1-1576
1-1576
1-1576
1-1576
1-1576
1-1576
1-1576
1-1576
1-1576
1-1576
1-1576
1-1576
1-1576
1-1576
1-1576
1-1576
1-1576
1-1576
1-1576
1-1576
1-1576
1-1576
1-1576
1-1576
1-1576
1-1576
1-1576
1-1576
1-1576
1-1576
1-1576
1-1576
1-1576
1-1576
1-1576
1-1576
1-1576
1-1576
1-1576
1-1576
1-1576
1-1576
1-1576
1-1576
1-1576
1-1576
1-1576
1-1576
1-1576
1-1576
1-1576
1-1576
1-1576
1-1576
1-1576
1-1576
1-1576
1-1576
1-1576
1-1576
1-1576
1-1576
1-1576
1-1576
1-1576
1-1576
1-1576
1-1576
1-1576
1-1576
1-1576
1-1576
1-1576
1-1576
1-1576
1-1576
1-1576
1-1576
1-1576
1-1576
1-1576
1-1576
1-1576
1-1576
1-1576
1-1576
1-1576
1-1576
1-1576
1-1576
1-1576
1-1576
1-1576
1-1576
1-1576
1-1576
1-1576
1-1576
1-1576
1-1576
1-1576
1-1576
1-1576
1-1576
1-1576
1-1576
1-1576
1-1576
1-1576
1-1576
1-1576
1-1576
1-1576
1-1576
1-1576
1-1576
1-1576
1-1576
1-1576
1-1576
1-1576
1-1576
1-1576
1-1576
1-1576
1-1576
1-1576
1-1576
1-1576
1-1576
1-1576
1-1576
1-1576
1-1576
1-1576
1-1576
1-1576
1-1576
1-1576
1-1576
1-1576
1-1576
1-1576
1-1576
1-1576
1-1576
1-1576
1-1576
1-1576
1-1576
1-1576
1-1576
1-1576
1-1576
1-1576
1-1576
1-1576
1-1576
1-1576
1-1576
1-1576
1-1576
1-1576
1-1576
1-1576
1-1576
1-1576
1-1576
1-1576
1-1576
1-1576
1-1576
1-1576
1-1576
1-1576
1-1576
1-1576
1-1576
1-1576
1-1576
1-1576
1-1576
1-1576
1-1576
1-1576
1-1576
1-1576
1-1576
1-1576
1-1576
1-1576
1-1576
1-1576
1-1576
1-1576
1-1576
1-1576
1-1576
1-1576
1-1576
1-1576
1- | 303E-06 | 929 | 9413
9625
825
825
825
825
825
825
825
825
825
8 | 724
062
318 | -364
-3696
-1356
-1356
-1356 | 3656
656
666
666
666
666
666
666
666
666 | 0.00
mmm | | 400
400
400
400
400
400 | 711E
967E
0 9691 | 000
000
000
000 | 2.367E-02 | | ECEFTCA CONC | LCCATION | TEFS) | 44.0
000 | 000 | 441A | C 800 | 000
000 | 600
600 | 000 | 414.87
000
000 | 000
000
v~w | 200
000
000 | 000
000 | 200
200
000 | 2.00 | | a. | RECEPTOR | KILCPE | 000 | 500
500 | 000 | 000 | 444
000 | 444
000 | 900 | 000 | 900
900
414141 | | 000
000 | 000
000
1100 | 16.00 | | | FECEFICA | | 1212101
1212101
1212101 | 2222 | וויייטטן
וויייטטן
וויייטטן | 000
0100
0100
0104 | וחחווו | Pinin. | 1444
444
444 | 444 | 444 | MAN IN I | CHTW1 | | 552 | | 0.00 | 1-2-20 -4-20 6 - 6 4 6 E - 01 6.416E-01 PEAN EXPECTED ARTIFFETIC 900 CHICROGRAMS/CL. 4.2166 2.9006 2.8336 3.54656 7.50666 2.51¢E 1.364E 1.920E 2.107E 2.60E WEEKDAY CATA • 1.227E-01 1.095E-05 -3.110E-05 255 555 588 Ž 555 222 500 CONCENTRATION 222 cicic 244 245 464 440 226 244 460 226 444 460 260 244 460 1.533E 1.723E 3.779E 2.576E 1.884E HOURS 1300 200 000 000 000 000 000 000 000 000 000 1 RECEPTOR LECATION NAS FIREFER KILCPETEFS 588 000 000 900 000 277 000 000 000 000 717 FECEFICA 1000 |
1000 | 10 ממן ואמן ממט ממט וההר וההר משני ואמן וממט וההר וההר 278 278 2000 1000 2000 1000 HCNTH PCNTH = PAY PERICC = 1200 TC 1300 HOURS CN & WEEKEAY | | | FT 1 SC2 | 57E-01 4.40 | 25 - 00 - 00 - 00 - 00 - 00 - 00 - 00 - | 000
000
000 | 46E 00 3.262E | 346-C: 2.4036-0
346-C: 2.4036-0
546-01 1:7606-0 | 3-16-01
5-56-01
3-66-01
3-66-01
3-66-01 | 266-01
3-176-0
546-01
5-1576-0
5-6536-0 | 9666
966 900
11-1018
966 900
11-5018
966 900
11-5018
966 900 | 516 CC | 200
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | 32E-01 1.458E-0
36E-01 2.415E-0 | 440
400
100
100
100
100
100
100
100
100 | 200
200
200
200
200
200 | |--------------|------------------|------------------|---------------|---|--|-------------------------------|---|---|---|---|-----------|--|---|--|---| | AL SCLECES | ED ARITHETIC PER | GRANS/CL. PETERS | 1.390E CG 4.5 | 135E
600
135E
600
135E
600
135E | 000
000
000
000
000 | 316-C3 7-6 | 0075E-02
625E-01
17E-02
17E-01 | 000
000
440 | 400 m | 25-5-5-5-5-5-5-5-5-5-5-5-5-5-5-5-5-5-5- | | 440EE-044 | 577E-61 12-4-92-92-61 12-4-7-92-61 12-4-7-92-92-92-92-92-92-92-92-92-92-92-92-92- | 7222
7686
0966
0966 | 90- | | ATA FROM TCT | EXPECTED | E LERICE | 3.566E 00 | 900 | 2-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1 | 2.021E 01
0.0
9.067E-02 | 900 | - | 3-02-56
 | 5.512E 90
6.525E 90
1.363E 90 | 1:354E 81 | 4500
1000
1000
1000 | 2-13-00
2-13-00
5-13-00
5-13-00
6-00
6-00
6-00
6-00
6-00
6-00
6-00 | 800
800
800
800
800 | 2000 | | CENTRATION C | b-10-34 | 5 | | 2.5996
3.6596
3.6596
011 |
15.540
15.540
15.540
15.540
15.540
15.540
15.540
15.540
15.540
15.540
15.540
15.540
15.540
15.540
15.540
15.540
15.540
15.540
15.540
15.540
15.540
15.540
15.540
15.540
15.540
15.540
15.540
15.540
15.540
15.540
15.540
15.540
15.540
15.540
15.540
15.540
15.540
15.540
15.540
15.540
15.540
15.540
15.540
15.540
15.540
15.540
15.540
15.540
15.540
15.540
15.540
15.540
15.540
15.540
15.540
15.540
15.540
15.540
15.540
15.540
15.540
15.540
15.540
15.540
15.540
15.540
15.540
15.540
15.540
15.540
15.540
15.540
15.540
15.540
15.540
15.540
15.540
15.540
15.540
15.540
15.540
15.540
15.540
15.540
15.540
15.540
15.540
15.540
15.540
15.540
15.540
15.540
15.540
15.540
15.540
15.540
15.540
15.540
15.540
15.540
15.540
15.540
15.540
15.540
15.540
15.540
15.540
15.540
15.540
15.540
15.540
15.540
15.540
15.540
15.540
15.540
15.540
15.540
15.540
15.540
15.540
15.540
15.540
15.540
15.540
15.540
15.540
15.540
15.540
15.540
15.540
15.540
15.540
15.540
15.540
15.540
15.540
15.540
15.540
15.540
15.540
15.540
15.540
15.540
15.540
15.540
15.540
15.540
15.540
15.540
15.540
15.540
15.540
15.540
15.540
15.540
15.540
15.540
15.540
15.540
15.540
15.540
15.540
15.540
15.540
15.540
15.540
15.540
15.540
15.540
15.540
15.540
15.540
15.540
15.540
15.540
15.540
15.540
15.540
15.540
15.540
15.540
15.540
15.540
15.540
15.540
15.540
15.540
15.540
15.540
15.540
15.540
15.540
15.540
15.540
15.540
15.540
15.540
15.540
15.540
15.540
15.540
15.540
15.540
15.540
15.540
15.540
15.540
15.540
15.540
15.540
15.540
15.540
15.540
15.540
15.540
15.540
15.540
15.540
15.540
15.540
15.540
15.540
15.540
15.540
15.540
15.540
15.540
15.540
15.540
15.540
15.540
15.540
15.540
15.540
15.540
15.540
15.540
15.540
15.540
15.540
15.540
15.540
15.540
15.540
15.540
15.540
15.540
15.540
15.540
15.540
15.540
15.540
15.540
15.540
15.540
15.540
15.540
15.540
15.540
15.540
15.540
15.540
15.540
15.540
15.540
15.540
15.540
15.540
15.540
15.540
15.540
15.540
15.540
15.540
15.540
15.540
15.540
15.540
15.540
15.540
15.540
15.540
15.540
15.540
15.540
15.540
15.540
15.540
15.540
15.540
15.540
15 | 1.020E 02
0.0234E-02 | 2-521E
2-521E
2-521E
000
2-521E
000
000
000
000
000
000
000
000
000
0 | 2-533E
0-533E
1-533E
0-533E | 2.2595
2.2595
2.2595
011 | | 8-301E 81 | 5.273E-02
9.027E-02 | 25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00 | 55-7-1
50-1-6
60-1-6
60-1-6 | 2.4245E
2.4245E
2.4245E
2.6246E
011 | | RECEPTOR CON | LECATION | ETERSI | 6.00 | 000 | 000
000 | 000 | MUN. | 000 | 000 | 0000 | 4110 | 000 | 000 | 000 | 000 | | | RECEFTCE | KILCY | 16.00 | 000 | 990 | 900 | 000 | 900
900
551 | 000 | 200
200
200 | 000 | 000 | 000 | 000 | 000
000
000 | | | FECESICA | | 25.7 | 0.00
0.00
0.00 | 11116)
000
11116) | 4919) | 61600
000
000 | 9-KV
 | (1)(F6) | | HOW | nitolar
SOM
SOM
SOM | NON | MAN CAN | telested | PENTH - PAY FERICE - 1200 TO 1300 HOURS ON A MEENCAY | | | 203 | 000
000
000
000 | 0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0 | 1.247E-021 | 1.672E 00
7.362E 00
8.085E-01 | 6 - 12 - 12 - 12 - 12 - 12 - 12 - 12 - 1 | 4 - 5 - 5 - 5 - 6 - 6 - 6 - 6 - 6 - 6 - 6 | 6 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - | 2001
2001
2001
2001
2000
2000
2000 | 444
444
446
466
466
466
466
466
466
466 | 2-76-01
2-24-01 | 244
264
264
264
264
264
264
264
264
264 | | | |----------------------------|-----------------|-------------|--|--|-------------------------------|---|--|---|---|--|--|------------------------------------
---|--|------| | ;
;
;
;
;
; | FER | TER) FT | 22.
22.
22.
22.
22.
22.
22.
22.
22.
22. | 2-42-E-10
5-5-46-03 | 707 | 1.04.00
0.00
0.00
0.00
0.00
0.00
0.00
0. | 4 - 5 - 2 - 5 - 5 - 5 - 5 - 5 - 5 - 5 - 5 | 1 - 4 = 0 = 0 = 0 = 0 = 0 = 0 = 0 = 0 = 0 = | -4-1
-4-1
-4-1
-4-1
-4-1
-4-1
-4-1
-4-1 | 750 | 200
000
000
000
000
000
000
000
000
000 | 000
1000
1000
1000
111 | | 100
100
100
100
100
100
100
100
100
100 | | | 1 SCLECES | D ARITHPETIC | GRAMO/CL. | 4.625E
4.625E
5.625E
6.625E | 5 1E - C | | 2-685E
2-685E
2-685E
2-685E | 500
500
500
500
500
500 | 2.032E
2.032E
2.672E
2.672E | 620
620
630
630
630
630
630
630
630
630
630
63 | 7 - 5 - 5 - 5 - 5 - 5 - 5 - 5 - 5 - 5 - | 1.945
1.4946
1.4946
000 | 070
070
070
000 | 1 - 454
1 - 324
1 32 | | 0.0 | | TA FROM TOTA | EXPECTE | P C P C P C | 8-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1 | -2.75E-0
5.265E-0 | S CONT | 1.615E 01
6.956E 00 | 900
900
900
900
900
900
900
900
900
900 | 9.40 | 925E
951E-1 | 3-072E-06 | \$92E
423E | 2000 | 3.283E 00
3.312E 00 | 248E 0 | 0.0 | | ENTRATION CA | | 00 | 4-2556
4-3346
4-3596
61 | 0
613E-0
184E-0 | 15.56
9906
8056
0056 | 9-425E 01
4-141E 01 | 269E
4165E | 100
165
000 | 873E 0
089E-1
727E-0 | 1.761E-05
1.086E-01
2.825E-01 | 2.692E 01
2.092E 01
2.020E 01 | 1.540E 01
1.756E 01 | 2.030E 01
1.805E 01
1.747E 01 | | 0.0 | | ECEFTOR CONC | LCCATION | TEFS) | 000 | 2-00 | 000 | 000 | 000 | | 000 | 000
000 | 000 | 900 | 000 | 440 | 1.00 | | | RECEPTCF | KILCHE | 000 | 000 | 000 | | 000 | 900 | 000 | 141414 | 141414 | 900 | 0000 | CACAU | | | - | FECES TO SECOND | | 44.m | CHOICH | 444 | (144)
(144)
(144) | 4441 | 4. RIRI | | SOUNG ! | 2000
2000
2000
2000 | 222 | 444 | 126.
136.
136.
136. | 370 | 16E-12 EXPECTED ARTIFICATION SCLFCES -2. 992E-11 -1.00E-CE 975E-C1 PECEFTOR CONCENTRATION CATA FACE TOTAL NAS PIRAPER PERICC . 1200 TO 1300 HOURS CN A WEEKDAY 5 35 200 900 900 RECEPTCE LCCATION (KILCPETERS) 23:00 PENTH - PAY #ECEET -90 きまちょう 555 555 555 P.C.C. ## LIST OF REFERENCES - 1. Federal Register, Vol. 36, No. 84, 30 April, 1971. - 2. Federal Register, Vol. 38, No. 136, 17 July, 1973. - 3. Northern Research and Engineering Corporation Report 1167 (Volumes 1 and 2), The Potential Impact of Aircraft Emissions On Air Quality, by M. Platt, R. C. Baker, E. K. Bastress, K. M. Chug and R. D. Siegel, 1971. - 4. GECMET Report EF-262, Model Verification-Aircraft Emissions Impact On Air Quality, by S. D. Thayer, D. J. Pelton, G. H. Stadsklev and B. D. Weaver, 1974. - 5. TRW Systems Group Report NTIS No. PB 189194, Air Quality Display Model, November 1969. - 6. Air Force Weapons Laboratory Technical Report-74-304, A Generalized Air Quality Assessment Model for Air Force Operations, by D. M. Rote and L. E. Wangen, March 1975. - 7. Naval Environmental Protection Support Office Report 101-Revision 3, Aircraft Engine Emissions Catalog, by B. A. Longley-Cook and J. A. Krimmel, June 1974. - 8. Air Force Weapons Laboratory Technical Report-73-199, United States Air Force Aircraft Pollution Emissions, by D. F. Naugle, Capt., USAF, November 1973. - 9. Air Force Weapons Laboratory Technical Report-74-303, USAF Aircraft Pollution Emission Factors and Landing and Takeoff (LTO) Cycles, by D. F. Naugle, Capt., USAF and S. R. Nelson, February 1975. - 10. Naval Postgraduate School Report NPS-57Nt75071A, Modification of an Ambient Air Quality Model for Assessment of U.S. Naval Aviation Emittants, by K. I. Weal, Lcdr., USN and D. W. Netzer, August 1975. - 11. Air Force Weapons Laboratory Technical Report-74-54, A Generalized Air Quality Assessment Model-An Operators Guide, by Argonne National Laboratory, July 1974 (Rev. May 1975). - 12. Air Force Weapons Laboratory Technical Report-74-279, USAF Aircraft Takeoff Length Distances and Climbout Profiles, by D. F. Menicucci, October 1974. 13. Aircraft Environmental Support Office Report AESO 111-75-15, Air Quality Impact From Aircraft Engine Test Facilities At Naval Air Station Miramar, California, June 1975. ## DISTRIBUTION LIST | | | NO. OI | copies | |----|---|--------|--------| | 1. | Chief of Naval Operations Navy Department Washington, DC 20760 (Attn: Codes: 0P451, 0P453) | 2 | | | 2. | Chief of Naval Material Navy Department Washington, DC 20360 (Attn: Codes: 03421, 055P1) | 2 | | | 3. | Commander Naval Air Systems Command Washington, DC 20361 (Codes: AIR-01B, 330D, 340E, 4147A, 50184, 53431B, 536B1, 53645) | 8 | | | 4. | Commander Naval Air Force U.S. Pacific Fleet Naval Air Station North Island San Diego, CA 92135 (Code: 722) | 1 | | | 5. | Commanding Officer Naval Air Rework Facility Naval Air Station North Island San Diego, CA 92135 (Code: 64270) | 1 | | | 6. | Commander Naval Facilities Engineering Command 200 Stoval Street Alexandria, VA 22332 (Codes: 104, 032B) | 2 | | | 7. | Commanding Officer Naval Facilities Engineering Command Western Division San Bruno, CA 94066 (Code: 09BE) | 1 | | | 8. | Naval Construction Battalion Center
Port Hueneme, CA 93043
(Codes 25, 251, 252) | 3 | | | 9. | U.S. Naval Academy Annapolis, MD 21402 (Attn: Prof. J. Williams) | 1 | | | | | No. | of | Copies | |-----|---|-----|----|--------| | 10. | Naval Weapons Center
China Lake, CA 93555
(Attn: Codes: 4503R, 70305) | | 2 | | | 11. | U.S. Marine Corps Washington, DC 20380 (Attn: Code: AAJ) | | 1 | | | 12. | U.S. Air Force
Washington, DC 20330
(Attn: Codes: PREV 5E425, PREV 5D438) | | 2 | | | 13. | Arnold Engineering Development Ctr. Arnold AFS, TN 37342 (Code: DYR) | | | | | 14. | Air Force Aero Propulsion Laboratory Wright-Patterson Air Force Base, OH 45433 (Code: SFF) | | 1 | | | 15. | Air Force Civil Engineering Center Tyndall AFB, FL 32401 (Code: EV, EVA) | | 2 | | | 16. | Air Force School of Aerospace Medicine
Brooks AFB, TX 78235
(Code: VNL) | | 1 | | | 17. | Army Aviation Systems Command P. O. Box 209 St. Louis, MO 63166 (Code: EQP) | | 1 | | | 18. | Eustis Directorate USA AMR & DL Ft. Eustis, VA 23604 (Code: SAVDL-EU-TAP) | | 1 | | | 19. | National Aeronautics and Space Admin. Lewis Research Center 2100 Brookpark Road Cleveland, OH 44135 (Attn: Mail Stop 60-6 (R. Rudey)) | | 1 | | | 20. | National Aeronautics and Space Administration
Langley Research Center
Hampton, VA 23365
(Attn: Mail Stop 217K, Dr. Levine) | | 1 | | | | | No. of | Copies | |-----|---|--------|----------| | 21. | Environmental Protection
Agency
401 M. Street, S.W.
Washington, DC 20024
(Attn: G. Kittredge) | 1 | | | 22. | Environmental Protection Agency
Procedures Development Branch
2565 Plymouth Road
Ann Arbor, MI 48105
(Attn: G. Austin) | 1 | | | 23. | Environmental Protection Agency
National Environmental Research Center
Meteorology Laboratory
Research Triangle Park, NC 27711
(Attn: ?. Humphry) | 1 | | | 24. | Environmental Protection Agency
National Environmental Research Center
P. O. Box 15027
Las Vegas, NV 89114
(Attn: Code: MAL; R. Evans, K. Zeller) | 2 | | | 25. | Federal Aviation Administration
800 Independence Avenue, SW
Washington, DC 20590
(Code: RD723; K. Forney)
HAPP; A. Broderick | 2 | | | 26. | Federal Aviation Administration
2100 2nd Street
Washington, DC 20591
(Code: ARD550, W. Westfield) | 1 | | | 27. | Federal Aviation Administration
National Aviation Facility Experimental
Atlantic City, NJ 08405
(Code: ANA-420) | Ctr. | | | 28. | Defense Documentation Center
Cameron Station
Alexandria, VA 22314 | 12 | ? | | | | No. of Copies | |-----|---|---------------| | 29. | Naval Air Propulsion Test Center
Trenton, NJ 08608
(Attn: A. Klarman, Code PE71:AK) | 2 | | 30. | Library Code 0142 Naval Postgraduate School Monterey, CA 93940 | 2 | | 31. | Dept. of Aeronautics
Code 67
Monterey, CA 93940
R. W. Bell, Chairman
D. W. Netzer | 1
10 | | 32. | Dean of Research Naval Postgraduate School Monterey, CA 93940 | 1 | | 33. | Commanding Officer Naval Air Station Miramar San Diego, CA 92145 (Attn: R. K. Miller) | 1 |